期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Solving material distribution routing problem in mixed manufacturing systems with a hybrid multi-objective evolutionary algorithm 被引量:7
1
作者 高贵兵 张国军 +2 位作者 黄刚 朱海平 顾佩华 《Journal of Central South University》 SCIE EI CAS 2012年第2期433-442,共10页
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency... The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II. 展开更多
关键词 material distribution routing problem multi-objective optimization evolutionary algorithm local search
在线阅读 下载PDF
Observer-based hybrid control algorithm for semi-active suspension systems 被引量:2
2
作者 REN Hong-bin CHEN Si-zhong +2 位作者 ZHAO Yu-zhuang LIU Gang YANG Lin 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2268-2275,共8页
In order to improve ride comfort and handling performance of the vehicle, an adaptive hybrid control algorithm is proposed for semi-active suspension systems. The virtues of sky-hook is combined with ground-hook contr... In order to improve ride comfort and handling performance of the vehicle, an adaptive hybrid control algorithm is proposed for semi-active suspension systems. The virtues of sky-hook is combined with ground-hook control strategies and a more suitable compromise for the suspension systems is chosen. The hybrid coefficient is tuned according to the longitudinal and lateral acceleration so as to improve the vehicle stability especially in high speed conditions. Damping continuous adjustable absorber is used to continuously control the damping force so as to eliminate the damping force jerk instead of traditional on-off control policy. Based on suspension stroke measured by sensors, unscented Kalman filter is designed to estimate the suspension states in real-time for the realization of hybrid control, which improves the robustness of the control strategy and is adaptive to different types of road profiles. Finally, the proposed control algorithm is validated under the following two typical road profiles: half-sine speed bump road and the random road. The simulation results indicate that the hybrid control algorithm could offer a good coordination between ride comfort and handling of the vehicle. 展开更多
关键词 semi-active suspension hybrid control unscented Kalman filter (UKF)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部