A simple control structure in servo system is occasionally needed for simple industrial application which precise and high control performance is not exessively important so that the cost production can be reduced eff...A simple control structure in servo system is occasionally needed for simple industrial application which precise and high control performance is not exessively important so that the cost production can be reduced efficiently. Simplified vector control, which has simple control structure, is utilized as the permanent magnet synchronous motor control algorithm and genetic algorithm is used to tune three PI controllers used in simplified vector control. The control performance is obtained from simulation and investigated to verify the feasibility of the algorithm to be applied in the real application. Simulation results show that the speed and torque responses of the system in both continuous time and discrete time can achieve good performances. Furthermore, simplified vector control combined with genetic algorithm has a similar perfofmance with conventional field oriented control algorithm and possible to be realized into the real simple application in the future.展开更多
A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustab...A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.展开更多
Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance c...Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance control is established. Then, the indirect adaptive control algorithm is derived. Through the analysis of its parameters, it can be noticed that the algorithm does not meet the requirements of the robot compliance control in a complex environment. Therefore, the fuzzy control algorithm is used to adjust the adaptive control parameters. The satisfied system response can be obtained based on the adjustment in real time according to the error between input and output. Comparative experiments and analysis of traditional adaptive control and the improved adaptive control algorithm are presented. It can be verified that not only desired contact force can be reached quickly in different environments, but also smaller contact impact and sliding avoidance are guaranteed, which means that the control strategy has great significance to enhance the adaptability of the hexapod robot.展开更多
A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equation...A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equations of the valve were derived in the form of nonlinear state equations.By comparing the simulated and measured data,the simulation model is validated with a deviation less than 15%,which can be used for the structural design and control algorithm optimization of proportional solenoid valves.展开更多
Based on the abort strategy of fixed periods, a novel predictive control scheduling methodology was proposed to efficiently solve overrun problems. By applying the latest control value in the prediction sequences to t...Based on the abort strategy of fixed periods, a novel predictive control scheduling methodology was proposed to efficiently solve overrun problems. By applying the latest control value in the prediction sequences to the control objective, the new strategy was expected to optimize the control system for better performance and yet guarantee the schedulability of all tasks under overrun. The schedulability of the real-time systems with p-period overruns was analyzed, and the corresponding stability criteria was given as well. The simulation results show that the new approach can improve the performance of control system compared to that of conventional abort strategy, it can reduce the overshoot and adjust time as well as ensure the schedulability and stability.展开更多
The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of free...The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of freedom(DOF). In this work, an LQR control algorithm with superelement model is intended to solve this issue leading to the fact that LQR control algorithm can be used in large finite element(FE) model for structure. In proposed model, the Craig-Bampton(C-B) method, which is one of the component mode syntheses(CMS), is used to establish superelement modeling to reduce structure's DOF and applied to LQR control algorithm to calculate Kalman gain matrix and obtain control forces. And then, the control forces are applied to original structure to simulate the responses of structure by vibration control. And some examples are given. The results show the computational efficiency of proposed model using synthesized models is higher than that of the classical method of LQR control when the DOF of structure is large. And the accuracy of proposed model is well. Meanwhile, the results show that the proposed control has more effects of vibration absorption on the ground structures than underground structures.展开更多
The quality prediction of tube hollow model based on the variance staged multiway partial least square (MPLS) method was proposed.The key aspects of staged decomposition of the productive data,calculation of the varia...The quality prediction of tube hollow model based on the variance staged multiway partial least square (MPLS) method was proposed.The key aspects of staged decomposition of the productive data,calculation of the variance value,modeling,and on-lined prediction in the variance-staged MPLS method were introduced.Based on the model,iterative optimal control method was used for quality control of tube hollow.The experimental results show that the obvious benefits of this method are low maintenance cost,good real time function,high reliability precision,and practical application to on-line prediction and optimization on the quality of tube hollow.展开更多
To resolve the path tracking problem of autonomous ground vehicles,an analysis of existing path tracking methods was carried out and an important conclusion was got.The vehicle-road model is crucial for path following...To resolve the path tracking problem of autonomous ground vehicles,an analysis of existing path tracking methods was carried out and an important conclusion was got.The vehicle-road model is crucial for path following.Based on the conclusion,a new vehicle-road model named "ribbon model" was constructed with consideration of road width and vehicle geometry structure.A new vehicle-road evaluation algorithm was proposed based on this model,and a new path tracking controller including a steering controller and a speed controller was designed.The difficulties of preview distance selection and parameters tuning with speed in the pure following controller are avoided in this controller.To verify the performance of the novel method,simulation and real vehicle experiments were carried out.Experimental results show that the path tracking controller can keep the vehicle in the road running as fast as possible,so it can adjust the control strategy,such as safety,amenity,and rapidity criteria autonomously according to the road situation.This is important for the controller to adapt to different kinds of environments,and can improve the performance of autonomous ground vehicles significantly.展开更多
Variable pump driving variable motor(VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle(UGV).VPDVM is a dual-input single-output nonlinear system with coupling,which is ...Variable pump driving variable motor(VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle(UGV).VPDVM is a dual-input single-output nonlinear system with coupling,which is difficult to control.High pressure automatic variables bang-bang(HABB) was proposed to achieve the desired motor speed.First,the VPDVM nonlinear mathematic model was introduced,then linearized by feedback linearization theory,and the zero-dynamic stability was proved.The HABB control algorithm was proposed for VPDVM,in which the variable motor was controlled by high pressure automatic variables(HA) and the variable pump was controlled by bang-bang.Finally,simulation of VPDVM controlled by HABB was developed.Simulation results demonstrate the HABB can implement the desired motor speed rapidly and has strong robustness against the variations of desired motor speed,load and pump speed.展开更多
A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. T...A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control(IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance.展开更多
A new adaptive Type-2 (T2) fuzzy controller was developed and its potential performance advantage over adaptive Type-1 (T1) fuzzy control was also quantified in computer simulation. Base on the Lyapunov method, th...A new adaptive Type-2 (T2) fuzzy controller was developed and its potential performance advantage over adaptive Type-1 (T1) fuzzy control was also quantified in computer simulation. Base on the Lyapunov method, the adaptive laws with guaranteed system stability and convergence were developed. The controller updates its parameters online using the laws to control a system and tracks its output command trajectory. The simulation study involving the popular inverted pendulum control problem shows theoretically predicted system stability and good tracking performance. And the comparison simulation experiments subjected to white noige or step disturbance indicate that the T2 controller is better than the T1 controller by 0--18%, depending on the experiment condition and performance measure.展开更多
For the purpose of engineering development for a new 8-step speed automatic transmission,a simplified dynamic model for this gearbox was established and key parameters which affected the shift quality were analyzed.Ai...For the purpose of engineering development for a new 8-step speed automatic transmission,a simplified dynamic model for this gearbox was established and key parameters which affected the shift quality were analyzed.Aiming at four different shift types,the ideal characteristics of shift clutch and engine control were set up.By using torque estimation method,PI slip control algorithm and engine coordinated control principle,the control model and transmission controller were well developed for three shift phases which included rapid-fill phase,torque phase and inertia phase.The testing environment on the rig and prototype vehicle level was built and the testing results obtained in ultimate condition could verify the accuracy and feasibility of this shift control strategy.The peak jerk during shift process was controlled within ±2 g/s where the smooth gearshift was obtained.The development proposal and algorithm have a high value for engineering application.展开更多
As the sampling rates of the inner loop and the outer loop of the target tracking control system are different,a typical digital multi-rate control system was formed.If the traditional single-rate design method was ap...As the sampling rates of the inner loop and the outer loop of the target tracking control system are different,a typical digital multi-rate control system was formed.If the traditional single-rate design method was applied,the low sampling rate loop will seriously impact the dynamical characteristic of the system.After analyzing and calculating the impact law of the low sampling rate loop to the bandwidth and the stability of the tracking system,a kind of multi-rate control system design method was introduced.Corresponding to the different sampling rates of the inner loop and the outer loop,the multi-rate control strategy was constituted by a high sampling rate sub-controller and a low sampling rate sub-controller.The two sub-controllers were designed separately and connected by means of the sampling rate converter.The low sampling rate controller determined the response rapidity of the system,while the high sampling rate controller applied additionally effective control outputs to the system during a sampling interval of the low sampling rate controller.With the introduced high and low sampling rates sub-controllers,the tracking control system can achieve the same performance as a single-rate controller with high sampling rate,yet it works under a much lower sampling rate.The simulation and experimental results show the effectiveness of the introduced multi-rate control design method.It reduces the settling time by 5 times and the over shoot by 4 times compared with the PID control.展开更多
An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) ...An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) based algorithm that derives its search directions by solving quadratic programming(QP) subproblems via an infeasible interior point method(IIPM) and evaluates step length adaptively via a simple line search and/or a quadratic search algorithm depending on the termination of the IIPM solver.The task of tuning PI/PID parameters for the first-and second-order systems was modeled as constrained NLP problem. SQP/IIPM algorithm was applied to determining the optimum parameters for the PI/PID control systems.To assess the performance of the proposed method,a Matlab simulation of PID controller tuning was conducted to compare the proposed SQP/IIPM algorithm with the gain and phase margin(GPM) method and Ziegler-Nichols(ZN) method.The results reveal that,for both step and impulse response tests,the PI/PID controller using SQP/IIPM optimization algorithm consistently reduce rise time,settling-time and remarkably lower overshoot compared to GPM and ZN methods,and the proposed method improves the robustness and effectiveness of numerical optimization of PID control systems.展开更多
In order to overcome difficulty of tuning parameters of fuzzy controller, a chaos optimal design method based on annealing strategy is proposed. First, apply the chaotic variables to search for parameters of fuzzy con...In order to overcome difficulty of tuning parameters of fuzzy controller, a chaos optimal design method based on annealing strategy is proposed. First, apply the chaotic variables to search for parameters of fuzzy contro-(ller,) and transform the optimal variables into chaotic variables by carrier-wave method. Making use of the intrinsic stochastic property and ergodicity of chaos movement to escape from the local minimum and direct optimization searching within global range, an approximate global optimal solution is obtained. Then, the chaos local searching and optimization based on annealing strategy are cited, the parameters are optimized again within the limits of the approximate global optimal solution, the optimization is realized by means of combination of global and partial chaos searching, which can converge quickly to global optimal value. Finally, the third order system and discrete nonlinear system are simulated and compared with traditional method of fuzzy control. The results show that the new chaos optimal design method is superior to fuzzy control method, and that the control results are of high precision, with no overshoot and fast response.展开更多
To overcome the disadvantage that the standard least squares support vector regression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm w...To overcome the disadvantage that the standard least squares support vector regression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm which was defined as multi-output least squares support vector regression(MLSSVR) was put forward by adding samples' absolute errors in objective function and applied to flatness intelligent control.To solve the poor-precision problem of the control scheme based on effective matrix in flatness control,the predictive control was introduced into the control system and the effective matrix-predictive flatness control method was proposed by combining the merits of the two methods.Simulation experiment was conducted on 900HC reversible cold roll.The performance of effective matrix method and the effective matrix-predictive control method were compared,and the results demonstrate the validity of the effective matrix-predictive control method.展开更多
Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approa...Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approach, the maximum and minimum of partial derivative for input and output nonlinearities are solved in the neighbourhood of the equilibrium. And several parameter-dependent Lyapunov functions, each one corresponding to a different vertex of polytopic descriptions models, are introduced to analyze the stability of Hammerstein-Wiener systems, but only one Lyapunov function is utilized to analyze system stability like the traditional method. Consequently, the conservation of the traditional quadratic stability is removed, and the terminal regions are enlarged. Simulation and field trial results show that the proposed algorithm is valid. It has higher control precision and shorter blowing time than the traditional approach.展开更多
The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade tempe...The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed.展开更多
文摘A simple control structure in servo system is occasionally needed for simple industrial application which precise and high control performance is not exessively important so that the cost production can be reduced efficiently. Simplified vector control, which has simple control structure, is utilized as the permanent magnet synchronous motor control algorithm and genetic algorithm is used to tune three PI controllers used in simplified vector control. The control performance is obtained from simulation and investigated to verify the feasibility of the algorithm to be applied in the real application. Simulation results show that the speed and torque responses of the system in both continuous time and discrete time can achieve good performances. Furthermore, simplified vector control combined with genetic algorithm has a similar perfofmance with conventional field oriented control algorithm and possible to be realized into the real simple application in the future.
文摘A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on line fuzzy inference system, and the other is a conventional PID controller. In the fuzzy inference system, three adjustable factors x p, x i , and x d are introduced. Their functions are to further modify and optimize the result of the fuzzy inference so as to make the controller have the optimal control effect on a given object. The optimal values of these adjustable factors are determined based on the ITAE criterion and the Nelder and Mead′s flexible polyhedron search algorithm. This optimal fuzzy PID controller has been used to control the executive motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that this controller is very effective and can be widely used to control different kinds of objects and processes.
基金Project(51221004) supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of ChinaProject(2010R50036) supported by the Program for Zhejiang Leading Team of S&T Innovation,China
文摘Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance control is established. Then, the indirect adaptive control algorithm is derived. Through the analysis of its parameters, it can be noticed that the algorithm does not meet the requirements of the robot compliance control in a complex environment. Therefore, the fuzzy control algorithm is used to adjust the adaptive control parameters. The satisfied system response can be obtained based on the adjustment in real time according to the error between input and output. Comparative experiments and analysis of traditional adaptive control and the improved adaptive control algorithm are presented. It can be verified that not only desired contact force can be reached quickly in different environments, but also smaller contact impact and sliding avoidance are guaranteed, which means that the control strategy has great significance to enhance the adaptability of the hexapod robot.
基金Project(2008ZHZX1A0502) supported by the Independence Innovation Achievements Transformation Crucial Special Program of Shandong Province,China
文摘A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equations of the valve were derived in the form of nonlinear state equations.By comparing the simulated and measured data,the simulation model is validated with a deviation less than 15%,which can be used for the structural design and control algorithm optimization of proportional solenoid valves.
基金Project (60505018) supported by the National Natural Science Foundation of China
文摘Based on the abort strategy of fixed periods, a novel predictive control scheduling methodology was proposed to efficiently solve overrun problems. By applying the latest control value in the prediction sequences to the control objective, the new strategy was expected to optimize the control system for better performance and yet guarantee the schedulability of all tasks under overrun. The schedulability of the real-time systems with p-period overruns was analyzed, and the corresponding stability criteria was given as well. The simulation results show that the new approach can improve the performance of control system compared to that of conventional abort strategy, it can reduce the overshoot and adjust time as well as ensure the schedulability and stability.
基金Project(LZ2015022)supported by Educational Commission of Liaoning Province of ChinaProjects(51138001,51178081)supported by the National Natural Science Foundation of China+1 种基金Project(2013CB035905)supported by the Basic Research Program of ChinaProjects(DUT15LK34,DUT14QY10)supported by Fundamental Research Funds for the Central Universities,China
文摘The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of freedom(DOF). In this work, an LQR control algorithm with superelement model is intended to solve this issue leading to the fact that LQR control algorithm can be used in large finite element(FE) model for structure. In proposed model, the Craig-Bampton(C-B) method, which is one of the component mode syntheses(CMS), is used to establish superelement modeling to reduce structure's DOF and applied to LQR control algorithm to calculate Kalman gain matrix and obtain control forces. And then, the control forces are applied to original structure to simulate the responses of structure by vibration control. And some examples are given. The results show the computational efficiency of proposed model using synthesized models is higher than that of the classical method of LQR control when the DOF of structure is large. And the accuracy of proposed model is well. Meanwhile, the results show that the proposed control has more effects of vibration absorption on the ground structures than underground structures.
基金Project(60674063) supported by the National Natural Science Foundation of China
文摘The quality prediction of tube hollow model based on the variance staged multiway partial least square (MPLS) method was proposed.The key aspects of staged decomposition of the productive data,calculation of the variance value,modeling,and on-lined prediction in the variance-staged MPLS method were introduced.Based on the model,iterative optimal control method was used for quality control of tube hollow.The experimental results show that the obvious benefits of this method are low maintenance cost,good real time function,high reliability precision,and practical application to on-line prediction and optimization on the quality of tube hollow.
基金Project(90820302)supported by the National Natural Science Foundation of China
文摘To resolve the path tracking problem of autonomous ground vehicles,an analysis of existing path tracking methods was carried out and an important conclusion was got.The vehicle-road model is crucial for path following.Based on the conclusion,a new vehicle-road model named "ribbon model" was constructed with consideration of road width and vehicle geometry structure.A new vehicle-road evaluation algorithm was proposed based on this model,and a new path tracking controller including a steering controller and a speed controller was designed.The difficulties of preview distance selection and parameters tuning with speed in the pure following controller are avoided in this controller.To verify the performance of the novel method,simulation and real vehicle experiments were carried out.Experimental results show that the path tracking controller can keep the vehicle in the road running as fast as possible,so it can adjust the control strategy,such as safety,amenity,and rapidity criteria autonomously according to the road situation.This is important for the controller to adapt to different kinds of environments,and can improve the performance of autonomous ground vehicles significantly.
基金Project(51375029)supported by the National Natural Science Foundation of ChinaProject(20091102120038)supported by Specialized Research Fund for Doctoral Program of Higher Education of China
文摘Variable pump driving variable motor(VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle(UGV).VPDVM is a dual-input single-output nonlinear system with coupling,which is difficult to control.High pressure automatic variables bang-bang(HABB) was proposed to achieve the desired motor speed.First,the VPDVM nonlinear mathematic model was introduced,then linearized by feedback linearization theory,and the zero-dynamic stability was proved.The HABB control algorithm was proposed for VPDVM,in which the variable motor was controlled by high pressure automatic variables(HA) and the variable pump was controlled by bang-bang.Finally,simulation of VPDVM controlled by HABB was developed.Simulation results demonstrate the HABB can implement the desired motor speed rapidly and has strong robustness against the variations of desired motor speed,load and pump speed.
文摘A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control(IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance.
基金Project(51005253) supported by the National Natural Science Foundation of ChinaProject(2007AA04Z344) supported by the National High Technology Research and Development Program of China
文摘A new adaptive Type-2 (T2) fuzzy controller was developed and its potential performance advantage over adaptive Type-1 (T1) fuzzy control was also quantified in computer simulation. Base on the Lyapunov method, the adaptive laws with guaranteed system stability and convergence were developed. The controller updates its parameters online using the laws to control a system and tracks its output command trajectory. The simulation study involving the popular inverted pendulum control problem shows theoretically predicted system stability and good tracking performance. And the comparison simulation experiments subjected to white noige or step disturbance indicate that the T2 controller is better than the T1 controller by 0--18%, depending on the experiment condition and performance measure.
基金Project(51105017) supported by the National Natural Science Foundation of ChinaProject(2011BAG09B00) supported by the National Science and Technology Support Program of ChinaProject(2010DFB80020) supported by the Technology Major Project of the Ministry of Science and Technology of China
文摘For the purpose of engineering development for a new 8-step speed automatic transmission,a simplified dynamic model for this gearbox was established and key parameters which affected the shift quality were analyzed.Aiming at four different shift types,the ideal characteristics of shift clutch and engine control were set up.By using torque estimation method,PI slip control algorithm and engine coordinated control principle,the control model and transmission controller were well developed for three shift phases which included rapid-fill phase,torque phase and inertia phase.The testing environment on the rig and prototype vehicle level was built and the testing results obtained in ultimate condition could verify the accuracy and feasibility of this shift control strategy.The peak jerk during shift process was controlled within ±2 g/s where the smooth gearshift was obtained.The development proposal and algorithm have a high value for engineering application.
基金Project(51105372) supported by the National Natural Science Foundation of ChinaProject(JC12-03-01) supported by the Research Plan of National University of Defense Technology,China
文摘As the sampling rates of the inner loop and the outer loop of the target tracking control system are different,a typical digital multi-rate control system was formed.If the traditional single-rate design method was applied,the low sampling rate loop will seriously impact the dynamical characteristic of the system.After analyzing and calculating the impact law of the low sampling rate loop to the bandwidth and the stability of the tracking system,a kind of multi-rate control system design method was introduced.Corresponding to the different sampling rates of the inner loop and the outer loop,the multi-rate control strategy was constituted by a high sampling rate sub-controller and a low sampling rate sub-controller.The two sub-controllers were designed separately and connected by means of the sampling rate converter.The low sampling rate controller determined the response rapidity of the system,while the high sampling rate controller applied additionally effective control outputs to the system during a sampling interval of the low sampling rate controller.With the introduced high and low sampling rates sub-controllers,the tracking control system can achieve the same performance as a single-rate controller with high sampling rate,yet it works under a much lower sampling rate.The simulation and experimental results show the effectiveness of the introduced multi-rate control design method.It reduces the settling time by 5 times and the over shoot by 4 times compared with the PID control.
基金Project(60874070) supported by the National Natural Science Foundation of ChinaProject(20070533131) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China
文摘An approach for parameter estimation of proportional-integral-derivative(PID) control system using a new nonlinear programming(NLP) algorithm was proposed.SQP/IIPM algorithm is a sequential quadratic programming(SQP) based algorithm that derives its search directions by solving quadratic programming(QP) subproblems via an infeasible interior point method(IIPM) and evaluates step length adaptively via a simple line search and/or a quadratic search algorithm depending on the termination of the IIPM solver.The task of tuning PI/PID parameters for the first-and second-order systems was modeled as constrained NLP problem. SQP/IIPM algorithm was applied to determining the optimum parameters for the PI/PID control systems.To assess the performance of the proposed method,a Matlab simulation of PID controller tuning was conducted to compare the proposed SQP/IIPM algorithm with the gain and phase margin(GPM) method and Ziegler-Nichols(ZN) method.The results reveal that,for both step and impulse response tests,the PI/PID controller using SQP/IIPM optimization algorithm consistently reduce rise time,settling-time and remarkably lower overshoot compared to GPM and ZN methods,and the proposed method improves the robustness and effectiveness of numerical optimization of PID control systems.
文摘In order to overcome difficulty of tuning parameters of fuzzy controller, a chaos optimal design method based on annealing strategy is proposed. First, apply the chaotic variables to search for parameters of fuzzy contro-(ller,) and transform the optimal variables into chaotic variables by carrier-wave method. Making use of the intrinsic stochastic property and ergodicity of chaos movement to escape from the local minimum and direct optimization searching within global range, an approximate global optimal solution is obtained. Then, the chaos local searching and optimization based on annealing strategy are cited, the parameters are optimized again within the limits of the approximate global optimal solution, the optimization is realized by means of combination of global and partial chaos searching, which can converge quickly to global optimal value. Finally, the third order system and discrete nonlinear system are simulated and compared with traditional method of fuzzy control. The results show that the new chaos optimal design method is superior to fuzzy control method, and that the control results are of high precision, with no overshoot and fast response.
基金Project(50675186) supported by the National Natural Science Foundation of China
文摘To overcome the disadvantage that the standard least squares support vector regression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm which was defined as multi-output least squares support vector regression(MLSSVR) was put forward by adding samples' absolute errors in objective function and applied to flatness intelligent control.To solve the poor-precision problem of the control scheme based on effective matrix in flatness control,the predictive control was introduced into the control system and the effective matrix-predictive flatness control method was proposed by combining the merits of the two methods.Simulation experiment was conducted on 900HC reversible cold roll.The performance of effective matrix method and the effective matrix-predictive control method were compared,and the results demonstrate the validity of the effective matrix-predictive control method.
基金Project(61074074) supported by the National Natural Science Foundation,ChinaProject(KT2012C01J0401) supported by the Group Innovative Fund,China
文摘Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approach, the maximum and minimum of partial derivative for input and output nonlinearities are solved in the neighbourhood of the equilibrium. And several parameter-dependent Lyapunov functions, each one corresponding to a different vertex of polytopic descriptions models, are introduced to analyze the stability of Hammerstein-Wiener systems, but only one Lyapunov function is utilized to analyze system stability like the traditional method. Consequently, the conservation of the traditional quadratic stability is removed, and the terminal regions are enlarged. Simulation and field trial results show that the proposed algorithm is valid. It has higher control precision and shorter blowing time than the traditional approach.
基金Supported by the Major Science and Technology Project of Jilin Province(20220301010GX)the International Scientific and Technological Cooperation(20240402071GH).
文摘The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed.