A hydrocarbon degrading bacterium KL2-13 was isolated from ten sites of oil contaminated soil in the Karamay oilfield. It was identified as the Bacillusfusiformis sp. bacterium based on its morphological and physiolog...A hydrocarbon degrading bacterium KL2-13 was isolated from ten sites of oil contaminated soil in the Karamay oilfield. It was identified as the Bacillusfusiformis sp. bacterium based on its morphological and physiological characteristics and the 16S rDNA sequence analysis. The factors influencing the hydrocarbon degradation by the bacterium KL2-13 were determined. The test results have showed that the hydrocarbon degrading bacterium KL2-13 requires an optimum pH range of 6-8, and the optimum inoculation quantity is 3%. The low-concentration metal ions Fe^2+, Mg^2+ and Ca^2+can improve the degradation ability of the bacteria KL2-13. A too low concentration of Tween-80 does not show obvious promotion to the degrading bacterium KL2-13, and an excessively high concentration can decrease the degradation ability of the bacterium, the best dosage of which is 2%. The hydrocarbon degrading rate reached 59.07%4-0.37% under the optimum culture conditions.展开更多
基金supports provided by the Science Research and Technology Developing Program, CNPC (2008D-4704-2): "Microbial remediation technology of high-temperature and arid oil polluted soil"
文摘A hydrocarbon degrading bacterium KL2-13 was isolated from ten sites of oil contaminated soil in the Karamay oilfield. It was identified as the Bacillusfusiformis sp. bacterium based on its morphological and physiological characteristics and the 16S rDNA sequence analysis. The factors influencing the hydrocarbon degradation by the bacterium KL2-13 were determined. The test results have showed that the hydrocarbon degrading bacterium KL2-13 requires an optimum pH range of 6-8, and the optimum inoculation quantity is 3%. The low-concentration metal ions Fe^2+, Mg^2+ and Ca^2+can improve the degradation ability of the bacteria KL2-13. A too low concentration of Tween-80 does not show obvious promotion to the degrading bacterium KL2-13, and an excessively high concentration can decrease the degradation ability of the bacterium, the best dosage of which is 2%. The hydrocarbon degrading rate reached 59.07%4-0.37% under the optimum culture conditions.