期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Transformer时间序列分块模型的CO_(2)驱油藏静压预测方法
1
作者 李春雷 杨河山 +3 位作者 张红霞 曹裕民 姜兴兴 靳彩霞 《油气地质与采收率》 北大核心 2025年第4期126-133,共8页
油藏静压是油田开发研究中的一项重要基础资料,其获取条件苛刻,样本数量极少,目前根据生产过程中的动压数据利用经验法估算静压,数据误差较大。针对上述问题,借助深度学习理论,提出一种基于Transformer时间序列分块模型的CO_(2)驱油藏... 油藏静压是油田开发研究中的一项重要基础资料,其获取条件苛刻,样本数量极少,目前根据生产过程中的动压数据利用经验法估算静压,数据误差较大。针对上述问题,借助深度学习理论,提出一种基于Transformer时间序列分块模型的CO_(2)驱油藏静压预测方法。根据相关性分析筛选模型参数,利用迭代插补器填充样本,构建静压预测样本集;依据通道独立原则,将多变量时间序列划分为单变量时间序列,引入时间序列分块机制将时间序列切分为子序列块以捕获局部特征;基于Transformer模型架构,利用多头自注意力机制提取特征,自监督学习机制提升对复杂动态特性的捕捉能力,实现CO_(2)驱油藏静压的预测。研究结果表明,所提出的模型可以实现对未停产井组每口井油层中部静压的预测,并显著提高预测的准确性。 展开更多
关键词 深度学习 时间序列分块模型 油藏静压 预测模型 TRANSFORMER
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部