期刊文献+
共找到339篇文章
< 1 2 17 >
每页显示 20 50 100
基于图时间卷积的变压器油中溶解气体预测方法
1
作者 杜鑫 黄萍 +2 位作者 唐崇年 姜伟基 谢军 《广东电力》 北大核心 2025年第4期101-108,共8页
对油中溶解气体含量进行精准预测可有效提升变压器潜伏性缺陷辩识水平,为进一步提升油中溶解气体浓度预测精度,深度挖掘不同特征气体间的关联信息,提出1种基于图时间卷积神经网络(graph-time convolutional neural network,G-TCN)的变... 对油中溶解气体含量进行精准预测可有效提升变压器潜伏性缺陷辩识水平,为进一步提升油中溶解气体浓度预测精度,深度挖掘不同特征气体间的关联信息,提出1种基于图时间卷积神经网络(graph-time convolutional neural network,G-TCN)的变压器油中溶解气体浓度预测方法。首先,通过计算皮尔逊相关系数捕捉特征气体间的隐性关系,将强关联的特征气体连接构成图,以特征气体拓扑关系图的方式描述不同气体浓度间的关联性;其次,使用图卷积神经网络(GCN)提取不同特征气体间的隐含信息,通过聚合邻近节点信息实现关联特征提取;最后,以GCN为基本单元,搭建适用于油中溶解气体预测的G-TCN模型,同时捕捉油中溶解气体的关联特征及长时序特征,实现特征气体浓度变化趋势预测。使用某500 kV变压器油色谱在线监测数据对所提方法进行验证,实验表明,所提方法可有效提高油中溶解气体浓度预测精度,平均预测精度超95%。 展开更多
关键词 油中溶解气体分析预测 图卷积 关联特征 时间卷积 深度学习
在线阅读 下载PDF
电力变压器油中溶解气体异常数据识别与含量预测研究 被引量:1
2
作者 杜江 范志远 +2 位作者 范仲华 王庆凯 李佩贤 《电网技术》 北大核心 2025年第2期844-853,I0116,共11页
采用神经网络模型对油中溶解气体含量进行预测是目前评估电力变压器运行状态的重要方法,数据质量是影响神经网络模型预测精度的关键因素,然而,由于变压器复杂的运行环境,使得采集到的气体数据中不可避免地存在多种类型的异常数据,进而... 采用神经网络模型对油中溶解气体含量进行预测是目前评估电力变压器运行状态的重要方法,数据质量是影响神经网络模型预测精度的关键因素,然而,由于变压器复杂的运行环境,使得采集到的气体数据中不可避免地存在多种类型的异常数据,进而造成数据质量下降,严重影响模型的预测精度。此外,神经网络模型的参数是否匹配也是影响其预测性能的重要因素,然而,传统依据人工经验选择参数存在主观性、低效性和不可扩展性等缺点,也在一定程度上影响了模型的预测性能。为解决上述问题,该文通过对最近邻集成隔离法(isolation using nearest neighbor ensemble,iNNE)进行修正,提出了修正最近邻集成隔离法(modified isolation using nearest neighbor ensemble,MiNNE),利用MiNNE综合考虑局部度量与全局度量的特性实现气体异常数据的准确识别,有效提升数据质量。同时,对鹈鹕优化算法进行改进,提出了改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA),并利用IPOA对影响神经网络模型预测精度的关键参数进行优化,有效克服了传统依据经验选参而导致模型预测精度低与传统POA易陷入局部最优的问题,提高了模型的预测性能。采用电力变压器实际运行数据对所提模型进行验证,结果表明,相较于其他模型,所提模型在7种特征气体预测中均取得了最佳的预测效果,充分证明了所提模型的优越性。 展开更多
关键词 电力变压器 溶解气体 异常数据识别 气体含量预测
在线阅读 下载PDF
基于加性模型的电力变压器油中溶解气体预测方法研究
3
作者 徐惠 罗传仙 张静 《电网与清洁能源》 北大核心 2025年第7期27-35,共9页
油中溶解气体分析(dissolved gas analysis,DGA)监测技术数据质量的管理、维护及保障体系不完善,导致目前油中溶解气体数据质量存在一定缺陷。提出一种适合油中溶解气体时序数据的趋势预测方法,通过对油中溶解气体在线监测时序数据的特... 油中溶解气体分析(dissolved gas analysis,DGA)监测技术数据质量的管理、维护及保障体系不完善,导致目前油中溶解气体数据质量存在一定缺陷。提出一种适合油中溶解气体时序数据的趋势预测方法,通过对油中溶解气体在线监测时序数据的特征进行深入分析,选择了泛化性能优越的统计模型,并借鉴加性模型的优点,对存在缺失值的油中溶解气体数据进行拟合,并对预测效果进行分析。同时,与XGBoos(textreme gradient boosting,XGBoost)模型预测效果进行对比,通过实例对比了两者在预测效果上的差异。 展开更多
关键词 溶解气体分析 数据质量 趋势预测 加性模型
在线阅读 下载PDF
基于策略梯度优化的变压器油中溶解气体预测模型
4
作者 汤健 侯慧娟 +3 位作者 王劭菁 任茂鑫 盛戈皞 江秀臣 《高压电器》 北大核心 2025年第7期91-100,共10页
对变压器油中溶解气体浓度进行预测分析可为其运行状态评估提供重要依据,从而有效掌握设备状态发展趋势,为预警和检修提供参考。鉴于现有算法难以实现长期精确预测,文中首次提出一种基于策略梯度(policy gradient, PG)算法优化的变压器... 对变压器油中溶解气体浓度进行预测分析可为其运行状态评估提供重要依据,从而有效掌握设备状态发展趋势,为预警和检修提供参考。鉴于现有算法难以实现长期精确预测,文中首次提出一种基于策略梯度(policy gradient, PG)算法优化的变压器油中溶解气体体积分数预测模型。首先以门控循环单元(gate recurrent unit,GRU)为基础,引入编码器—解码器结构搭建Sequence to Sequence(Seq2Seq)网络模型,并且结合注意力机制和Scheduled Sampling算法,提高长时间多步预测的准确性及稳定性。其次运用强化学习中策略梯度算法对网络模型进行超参数调优,并由基线函数和经验池结构改进算法减小策略网络决策方差。算例分析表明,文中方法能够深度提取特征参量时序间关系,准确预测特征气体体积分数发展趋势。相比Seq2Seq模型,平均相对误差和最大相对误差分别降低了23.91%和10.22%;相比LSTM模型,分别降低了61.54%和59.02%。 展开更多
关键词 变压器 溶解气体 策略梯度 Seq2Seq 多步预测
在线阅读 下载PDF
考虑时空耦合关系的电力变压器油中溶解气体多尺度融合预测方法
5
作者 张倩倩 李敏 +3 位作者 耿绍胜 王春鑫 谢军 谢庆 《绝缘材料》 北大核心 2025年第6期122-130,共9页
对油中溶解气体的时空耦合关系进行多尺度挖掘,有助于提高油中溶解气体预测精度,为变压器运维决策提供可靠理论依据。为此,提出一种考虑时空耦合信息的变压器油中溶解气体多尺度融合预测方法。首先,利用Res2Net对油中溶解气体数据进行... 对油中溶解气体的时空耦合关系进行多尺度挖掘,有助于提高油中溶解气体预测精度,为变压器运维决策提供可靠理论依据。为此,提出一种考虑时空耦合信息的变压器油中溶解气体多尺度融合预测方法。首先,利用Res2Net对油中溶解气体数据进行多尺度时间特征提取,捕捉特征气体不同频率的周期性时间特征信息。其次,通过计算互信息捕捉特征气体间隐性关系,以拓扑关系图的形式描述不同气体间关联性,并使用图卷积神经网络(GCN)提取空间信息特征。最后,将多尺度时间信息与空间信息进行融合拼接,采用时间卷积网路(TCN)对油中溶解气体进行预测,并使用某500 kV变压器油色谱在线监测数据对所提方法进行验证。结果表明:相比于传统预测方法,Res2NetGCN-TCN模型可有效提高油中溶解气体含量预测精度,平均预测精度可达98.68%。 展开更多
关键词 溶解气体预测 Res2Net 图卷积 时间卷积 时空信息融合
在线阅读 下载PDF
计及时空特性的变压器油中溶解气体预测模型 被引量:1
6
作者 李紫豪 何怡刚 +1 位作者 周亚中 雷蕾潇 《电子测量与仪器学报》 北大核心 2025年第3期1-12,共12页
针对电力变压器复杂运行环境下油中溶解气体随时间呈现非平稳和非线性特性,仅考虑时间维度关联特征的神经网络预测模型难以满足高准确性、高可靠性需求,且在数据采集过程中不可避免的存在异常值,导致数据质量下降,进而影响预测模型精度... 针对电力变压器复杂运行环境下油中溶解气体随时间呈现非平稳和非线性特性,仅考虑时间维度关联特征的神经网络预测模型难以满足高准确性、高可靠性需求,且在数据采集过程中不可避免的存在异常值,导致数据质量下降,进而影响预测模型精度。因此首先采用基于密度的噪声应用空间聚类(DBSCAN)对油中溶解气体数据清洗,然后提出自适应非线性权重和莱维飞行策略改进鲸鱼优化算法,提高其局部及全局寻优能力,利用改进的鲸鱼优化算法优化DBSCAN中超参数提高数据清洗效果,最后分析气体成分间复杂关联关系,构建时空耦合卷积神经网络模型挖掘气体的时空特征,实现油中溶解气体时间序列预测。通过某电站变压器油中溶解气体实测数据验证,结果表明数据清洗后预测拟合优度(R^(2))提高0.727,在6种特征气体预测中R2都在0.9以上。相较于其他模型,所提模型在特征气体预测中均取得了最佳的预测结果,充分证明所提模型的有效性。 展开更多
关键词 改进的鲸鱼优化算法 数据清洗 时空耦合卷积神经网络 溶解气体预测
在线阅读 下载PDF
基于ICEEMDAN和时变权重集成预测模型的变压器油中溶解气体含量预测 被引量:10
7
作者 马宏忠 肖雨松 +3 位作者 孙永腾 李勇 朱雷 许洪华 《高电压技术》 EI CAS CSCD 北大核心 2024年第1期210-220,共11页
为了实现对变压器油中溶解气体体积分数的精确预测,同时克服仅使用单一预测模型导致预测精度及泛化能力不足的局限,提出了一种基于改进完全自适应噪声集合经验模态分解(improved complete ensemble empirical mode decomposition,ICEEMD... 为了实现对变压器油中溶解气体体积分数的精确预测,同时克服仅使用单一预测模型导致预测精度及泛化能力不足的局限,提出了一种基于改进完全自适应噪声集合经验模态分解(improved complete ensemble empirical mode decomposition,ICEEMDAN)和灰色关联系数时变权重集成预测模型的变压器油中溶解气体预测方法。首先将溶解气体含量序列模态分解为一系列具有不同时间尺度的子序列。然后,使用门控循环神经网络和麻雀搜索算法优化支持向量机对各子序列进行训练,组合为一个集成预测模型;并比较不同预测方法的预测精度,计算灰色关联系数时变权重,形成各子系列的预测结果。最后将各子序列的预测结果叠加重构,得到最终预测结果。算例分析结果显示:该方法单步预测的均方根误差、平均绝对误差和相关系数分别为0.593、0.422和0.768,相比其他算法在预测精度上有明显提升,同时具有很强的泛化性能,可以为油浸式变压器内部状态监测提供依据。 展开更多
关键词 溶解气体 ICEEMDAN 麻雀搜索算法 支持向量机 门控循环神经网络 时变权重 集成模型
在线阅读 下载PDF
基于相关变分模态分解和CNN-LSTM的变压器油中溶解气体体积分数预测 被引量:8
8
作者 范志远 杜江 《高电压技术》 EI CAS CSCD 北大核心 2024年第1期263-273,I0020,共12页
为解决变压器油中溶解气体实际监测数据中噪声信号对模型预测性能的影响以及单一长短期记忆神经网络(long short-term memory,LSTM)无法对数据间的深层特征进行有效提取的问题,提出了一种融合了相关变分模态分解(correlation variationa... 为解决变压器油中溶解气体实际监测数据中噪声信号对模型预测性能的影响以及单一长短期记忆神经网络(long short-term memory,LSTM)无法对数据间的深层特征进行有效提取的问题,提出了一种融合了相关变分模态分解(correlation variational mode decomposition,CVMD)、1维卷积神经网络(one dimensional convolutional neural network,1D-CNN)和LSTM的组合预测模型。首先,利用CVMD去除原始气体序列中的噪声信号,并将去噪序列分解为1组相对平稳的子序列分量;然后,针对各子序列分量分别构建CNN-LSTM预测模型,利用1D-CNN挖掘数据间的深层特征形成特征向量,并将其输入到LSTM中进行预测;最后,对各子序列预测结果叠加重构,得到最终的气体预测值。并通过4组对比实验对所提模型进行了全方位、多角度的验证。算例研究结果表明,所提模型单步和多步预测的平均绝对百分比误差分别为1.53%和2.09%。相较于现有模型,该文所提模型在单步和多步预测性能上均有明显提升,为变压器在线监测和故障预警提供了重要技术支撑。 展开更多
关键词 溶解气体 相关变分模态分解 1维卷积神经网络 长短期记忆神经网络 气体体积分数预测
在线阅读 下载PDF
基于OVMD-HWOA-KELM模型的变压器油中溶解气体体积分数预测方法 被引量:5
9
作者 谢明浩 张林鍹 +1 位作者 董小刚 许晋闻 《高电压技术》 EI CAS CSCD 北大核心 2024年第8期3793-3804,I0037,I0038,I0039,共15页
针对变压器油中溶解气体序列波动性、随机性较强难以精确预测的问题,提出一种基于最优变分模态分解(optimal variational mode decomposition,OVMD)、混合型鲸鱼优化算法(hybrid whale optimization algorithm,HWOA)和核极限学习机(kern... 针对变压器油中溶解气体序列波动性、随机性较强难以精确预测的问题,提出一种基于最优变分模态分解(optimal variational mode decomposition,OVMD)、混合型鲸鱼优化算法(hybrid whale optimization algorithm,HWOA)和核极限学习机(kernel extreme learning machine,KELM)的组合预测模型。首先,运用OVMD获取最优分解参数,并将原始序列分解为一系列相对平稳的分量;其次,通过在鲸鱼种群中融入混沌映射、非线性收敛参数、自适应权重因子和改进的算术优化算法提出HWOA算法,并利用测试函数验证HWOA算法的优越性;然后,对各分量分别构建KELM预测模型,使用HWOA优化KELM的关键参数。最后,将各分量的预测结果叠加重构,得到最终预测结果。案例分析表明,所提模型对变压器正常和异常案例预测的决定系数分别可达97.7%和93.46%,相较于现存方法,该模型具有更好的准确性和适应性,可为电力变压器运维管理提供有利技术支撑。 展开更多
关键词 溶解气体 最优变分模态分解 融合型鲸鱼优化算法 核极限学习机 变压器状态预测
在线阅读 下载PDF
基于变分模态分解-布谷鸟搜索-支持向量回归的变压器油中溶解气体浓度预测方法 被引量:2
10
作者 王娜娜 栗文义 李建萩 《电子测量技术》 北大核心 2024年第4期10-17,共8页
针对电力变压器油中溶解气体浓度预测过程中存在的时间序列内部复杂和预测困难等问题,研究了时间序列分解预测重构方式,提出变分模态分解,结合布谷鸟搜索-支持向量回归组合预测方法。首先采用VMD将原始溶解气体浓度分解成为一组平稳的... 针对电力变压器油中溶解气体浓度预测过程中存在的时间序列内部复杂和预测困难等问题,研究了时间序列分解预测重构方式,提出变分模态分解,结合布谷鸟搜索-支持向量回归组合预测方法。首先采用VMD将原始溶解气体浓度分解成为一组平稳的模态分量,降低了预测的复杂度。之后利用预测性能较好的SVR对各个模态分量分别进行预测。最后使用CS开展全局搜索对SVR参数进行优化选取,将得到的溶解气体浓度预测结果进行叠加重构。通过对油中溶解气体中H_(2)的仿真实验,得到VMD-CS-SVR组合模型预测结果的均方根误差为0.124μL/L,平均绝对百分比误差为1.19%,有效提升了预测精度。通过对CO和C 2H 4建模预测,进一步验证了本文所提模型的有效性。 展开更多
关键词 电力变压器 溶解气体浓度 支持向量回归 布谷鸟搜索 模态分解
在线阅读 下载PDF
基于TVFEMD和多模型融合的变压器油中溶解气体体积分数预测方法 被引量:1
11
作者 曹正江 付文龙 +1 位作者 文斌 花雅文 《高压电器》 CAS CSCD 北大核心 2024年第8期156-166,共11页
油中溶解气体分析可以反映变压器的运行状态,对其体积分数精准预测可以为变压器早期故障判别和预警提供理论支撑。为此提出了一种基于时变滤波经验模态分解和多模型融合的变压器油中溶解气体体积分数预测方法。首先,通过时变滤波经验模... 油中溶解气体分析可以反映变压器的运行状态,对其体积分数精准预测可以为变压器早期故障判别和预警提供理论支撑。为此提出了一种基于时变滤波经验模态分解和多模型融合的变压器油中溶解气体体积分数预测方法。首先,通过时变滤波经验模态分解将气体体积分数序列分解为多个子序列,降低其非平稳性;其次,利用多模型融合策略,将4种不同单模型的预测结果进行融合重构,因单模型权重系数对预测结果有显著影响,利用改进黏菌算法对权重系数进行优化,以提高预测精度;最后,通过算例验证表明,相比于传统的预测模型,所提方法具有更高的预测精度,可以更好地预测油中气体体积分数的变化趋势。 展开更多
关键词 溶解气体体积分数预测 时变滤波经验模态分解 改进黏菌算法 多模型融合
在线阅读 下载PDF
基于CEEMDAN和TCN的变压器油中溶解气体含量预测 被引量:5
12
作者 张文乾 刘金凤 +2 位作者 江军 赵旭峰 范利东 《电力工程技术》 北大核心 2024年第3期192-200,233,共10页
准确预测油中溶解气体含量的变化趋势,对变压器的状态评价和寿命评估有着积极的作用。为了提高油中溶解气体预测的准确性,文中提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adapti... 准确预测油中溶解气体含量的变化趋势,对变压器的状态评价和寿命评估有着积极的作用。为了提高油中溶解气体预测的准确性,文中提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和时间卷积网络(time convolution network,TCN)的油中溶解气体预测方法。首先,通过CEEMDAN方法将油中溶解气体含量的原始序列分解为多个本征模态分量,并将其中的稳定分量与非稳定分量分离;其次,对本征模态分量分别建立TCN并预测未来趋势变化;最后,叠加TCN对各个本征模态分量的预测结果,重构得到原始序列的预测结果。实例分析表明,该预测方法的均方根误差、平均绝对误差、最大误差分别为1.01μL/L、1.53μL/L、5.54μL/L,相较于未采用CEEMDAN算法时分别减小了53.47%、41.18%、13.36%;在使用CEEMDAN的情况下,对比常用的递归神经网络,3种误差均最小。且对比现有油中溶解气体预测方法,文中提出的油中溶解气体预测方法具有更高的预测精度,可以为制定状态检修策略提供更有效的支撑。 展开更多
关键词 溶解气体 变压器 自适应噪声完备集合经验模态分解(CEEMDAN) 时间卷积网络(TCN) 时间序列预测 状态检修
在线阅读 下载PDF
基于模态分解和混合式CNN⁃GRUT的变压器油中溶解气体预测方法 被引量:2
13
作者 谭志超 范竞敏 +2 位作者 冯陆滔 莫文俊 钟铭伟 《电工电能新技术》 CSCD 北大核心 2024年第7期80-90,共11页
为防止电力变压器出现运维不足或者过度运维的情况,对其运行状态进行评估和潜在性故障进行预测具有重要意义。DGA技术是对变压器状态进行评估的有效方法,而变压器的机械振动、油温等原因会导致油中溶解气体信号呈非线性趋势,非稳定特性... 为防止电力变压器出现运维不足或者过度运维的情况,对其运行状态进行评估和潜在性故障进行预测具有重要意义。DGA技术是对变压器状态进行评估的有效方法,而变压器的机械振动、油温等原因会导致油中溶解气体信号呈非线性趋势,非稳定特性;致使预测难度增加,甚至日常测量气体数据缺失导致以DGA技术为主的在线监测系统无法监测变压器状态。针对以上问题,本文应用EEMD分解气体浓度信号集,而EEMD产生的高频本征模态函数会增加预测难度和影响预测精度,使用WPD进一步将子信号模态函数分解,针对过去机器学习无法分离和解析浓度信号间时间关联性和蕴藏特性的难题,本文提出了混合式CNN⁃GRUT预测模型,分离气体浓度子信号当中的蕴藏特性,深度解析气体浓度子信号集当中的时间关联特性,迭代子信号重组得到油中溶解气体浓度信号预测值。实验结果得出,提出的CMD⁃CNN⁃GRUT预测模型相较于BP、Elman等混合预测模型,CMD⁃CNN⁃GRUT的预测平均绝对误差减少2244%和309%,并且结合实验证明了所提出的预测模型的有效性。 展开更多
关键词 溶解气体 模态分解 卷积神经网络 门控循环网络 预测
在线阅读 下载PDF
基于核熵成分分析的油中溶解气体浓度预测 被引量:5
14
作者 江风云 唐勇波 《控制工程》 CSCD 北大核心 2020年第8期1419-1424,共6页
针对变压器油中溶解气体浓度预测中信息利用不完善问题,提出基于核熵成分分析(Kernel Entropy Component Analysis,KECA)的油中溶解气体浓度预测建模方法。首先用灰关联分析方法选取预测模型的输入变量;然后对选取的输入变量进行相空间... 针对变压器油中溶解气体浓度预测中信息利用不完善问题,提出基于核熵成分分析(Kernel Entropy Component Analysis,KECA)的油中溶解气体浓度预测建模方法。首先用灰关联分析方法选取预测模型的输入变量;然后对选取的输入变量进行相空间重构;最后采用Renyi熵信息测度确定KECA核参数,用KECA对重构相空间提取核熵成分作为支持向量机(Support Vector Machine,SVM)的输入,建立变压器油中溶解气体浓度预测模型。用本文方法、单变量时间序列方法、多元变量时间序列方法测试60例样本,本文方法具有最小的均方根误差,为0.1607。实验结果表明,本文提出的方法具有较优的预测精度和泛化能力。 展开更多
关键词 变压器 溶解气体 核熵成分分析 RENYI熵 预测
在线阅读 下载PDF
基于油中溶解气体分析的变压器故障预测 被引量:5
15
作者 陈铁 陈卫东 +1 位作者 李咸善 陈忠 《电子测量技术》 北大核心 2021年第22期25-31,共7页
预测变压器潜伏性故障对评估其健康状态至关重要。提出一种新型变压器故障预测方法,首先以LSTM网络为载体搭建时间注意力机制预测框架,并采用IALO算法优化其参数;其次利用优化的模型预测变压器油中溶解气体;然后采用MPA算法优化的SVM模... 预测变压器潜伏性故障对评估其健康状态至关重要。提出一种新型变压器故障预测方法,首先以LSTM网络为载体搭建时间注意力机制预测框架,并采用IALO算法优化其参数;其次利用优化的模型预测变压器油中溶解气体;然后采用MPA算法优化的SVM模型对气体预测结果进行故障诊断;最后统计诊断结果并与实际运行状态对比验证模型。实验结果显示在第42~58天内运行状态异常次数最多为29次,未来两个月内运行异常几率为86.89%,其中中温过热故障占比最高为88.67%,与实际情况误差仅为2.46%和1.29%,预测结果与实际运行情况符合较高,证明了所提方法在准确预测变压器运行状态异常时间点和故障类型中的可行性。 展开更多
关键词 变压器 故障预测 溶解气体分析 改进的蚁狮算法 长短时记忆网络 时间注意力机制 支持向量机
在线阅读 下载PDF
基于CEEMD联合TGSCSO-LSTM算法的变压器油中气体浓度预测方法 被引量:1
16
作者 彭继慎 夏玲云 王燚增 《电气工程学报》 CSCD 北大核心 2024年第4期407-415,共9页
油中溶解气体浓度的预测可为电力变压器状态评估与早期故障诊断提供重要的数据依据。由此,针对长短期记忆网络(Long short-term memory network,LSTM)预测模型参数选择困难的问题,同时为提高变压器油中溶解气体浓度预测的精度,提出一种... 油中溶解气体浓度的预测可为电力变压器状态评估与早期故障诊断提供重要的数据依据。由此,针对长短期记忆网络(Long short-term memory network,LSTM)预测模型参数选择困难的问题,同时为提高变压器油中溶解气体浓度预测的精度,提出一种基于CEEMD联合TGSCSO-LSTM算法的变压器油中气体浓度预测方法。利用互补集合经验模态分解算法(Complementary ensemble empirical mode decomposition,CEEMD)将原始气体浓度序列分解为一系列具有一定频率特征的分量,以提高原始序列的可预测性能;针对各分量分别建立LSTM预测模型,同时利用经Tent映射随机初始化种群与高斯扰动改进的沙丘猫群优化算法(Sand cat swarm optimization,SCSO)对LSTM网络参数进行优化选取,以提高算法的预测精度;最后重构各个分量的预测结果以获取最终的油中溶解气体浓度预测结果。利用某500 kV变压器实际气体浓度数据对所提方法进行对比试验,试验结果表明,所提方法油中溶解气体浓度预测性能优良,具有较好的应用价值。 展开更多
关键词 溶解气体 互补集合经验模态分解 沙丘猫群优化算法 长短时记忆神经网络
在线阅读 下载PDF
油中溶解气在线设备现场校验一体化装置研制
17
作者 邓先钦 张君 +2 位作者 彭伟 杨正翰 熊鸣翔 《实验室研究与探索》 北大核心 2025年第7期54-59,共6页
针对现有变压器油中溶解气现场校验装置的不足,提出了一种基于压力、温度、速度和比例参数的混油控制算法(PD算法)。基于该方法,研制了一种一体化校验装置。该装置能够在不同浓度油样中,根据温度和压力的变化,动态调节搅拌泵速和比例参... 针对现有变压器油中溶解气现场校验装置的不足,提出了一种基于压力、温度、速度和比例参数的混油控制算法(PD算法)。基于该方法,研制了一种一体化校验装置。该装置能够在不同浓度油样中,根据温度和压力的变化,动态调节搅拌泵速和比例参数,从而配置出符合相关标准要求的精确标准油样。同时,该装置实现了与外部数字实验室的数据互联互通,完成了从现场标准油样配置、在线装置校验到数据传输的一体化校验流程。实验室和现场试验表明,所研制的一体化校验装置的精度和重复性达到了相关标准规定。该装置显著减少了校验时间,并有效降低了人为操作带来的误差,为实验室和现场校验的自动化与数字化建设提供了有力支持。 展开更多
关键词 溶解气体分析 校验 标准
在线阅读 下载PDF
基于灰关联和模糊支持向量机的变压器油中溶解气体浓度的预测 被引量:28
18
作者 司马莉萍 舒乃秋 +2 位作者 左婧 王波 彭辉 《电力系统保护与控制》 EI CSCD 北大核心 2012年第19期41-46,共6页
提出一种基于灰关联分析和模糊支持向量机的电力变压器油中溶解气体浓度预测模型。该模型考虑了变压器油温、负荷对油中气体浓度的影响,先利用灰关联度分析各因素间的相关性,提取影响气体浓度的主要因素作为支持向量机回归建模的输入样... 提出一种基于灰关联分析和模糊支持向量机的电力变压器油中溶解气体浓度预测模型。该模型考虑了变压器油温、负荷对油中气体浓度的影响,先利用灰关联度分析各因素间的相关性,提取影响气体浓度的主要因素作为支持向量机回归建模的输入样本属性。再将模糊数学和支持向量机结合起来,引入模糊隶属函数,将样本按照时间由近及远赋予由大到小的权重,反映出近期数据对后续预测结果的影响大于早期数据。该模型提高了预测精度,克服了传统支持向量机和只考虑某种或全部气体预测方法的不足。通过实例分析,验证了模型的有效性和优越性。 展开更多
关键词 变压器 溶解气体 灰关联分析 模糊支持向量机 预测
在线阅读 下载PDF
变压器油中溶解气体浓度灰色预测模型的改进 被引量:69
19
作者 王有元 廖瑞金 +2 位作者 孙才新 杜林 杜蜀薇 《高电压技术》 EI CAS CSCD 北大核心 2003年第4期24-26,共3页
介绍了改进灰色预测模型 GM( 1,1)后建立的 GM( 1,1,β)模型。对大型油浸式电力变压器油中溶解气体浓度的实例预测验证了改进模型的准确。
关键词 变压器 溶解气体浓度 灰色预测模型 气体含量 绝缘
在线阅读 下载PDF
激光拉曼光谱应用于变压器油中溶解气体分析 被引量:53
20
作者 陈伟根 赵立志 +2 位作者 彭尚怡 刘军 周婧婧 《中国电机工程学报》 EI CSCD 北大核心 2014年第15期2485-2492,共8页
变压器油中溶解气体在线监测是实施变压器状态检修的重要手段之一。激光拉曼光谱技术能直接使用单一频率的激光对混合气体进行非接触式的测量,符合在线监测的要求。利用激光拉曼光谱对变压器油中溶解气体进行分析,能克服传统在线监测方... 变压器油中溶解气体在线监测是实施变压器状态检修的重要手段之一。激光拉曼光谱技术能直接使用单一频率的激光对混合气体进行非接触式的测量,符合在线监测的要求。利用激光拉曼光谱对变压器油中溶解气体进行分析,能克服传统在线监测方法的诸多不足。对激光拉曼光谱在变压器油中溶解气体分析中的应用进行了研究。分析了变压器油中7种主要故障特征气体(H2、CH4、C2H6、C2H4、C2H2、CO、CO2)的拉曼特征频谱,并阐述了基于特征频谱和最小二乘法对7种特征气体进行定性定量分析的方法。利用共聚焦拉曼技术和镀银石英玻璃管制成的气体样品池,构建了激光拉曼光谱气体分析试验平台。结合平台研究了7种故障特征气体的拉曼光谱检测特性,并与实验室气相色谱法的测量结果进行了对比。对比结果表明,激光拉曼光谱能有效地对变压器油中溶解气体进行定量分析,为变压器油中溶解气体的拉曼光谱在线监测奠定了基础。 展开更多
关键词 溶解气体 拉曼光谱 变压器 多组分气体分析 石英玻璃管
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部