油中溶解气体分析(dissolved gas analysis,DGA)监测技术数据质量的管理、维护及保障体系不完善,导致目前油中溶解气体数据质量存在一定缺陷。提出一种适合油中溶解气体时序数据的趋势预测方法,通过对油中溶解气体在线监测时序数据的特...油中溶解气体分析(dissolved gas analysis,DGA)监测技术数据质量的管理、维护及保障体系不完善,导致目前油中溶解气体数据质量存在一定缺陷。提出一种适合油中溶解气体时序数据的趋势预测方法,通过对油中溶解气体在线监测时序数据的特征进行深入分析,选择了泛化性能优越的统计模型,并借鉴加性模型的优点,对存在缺失值的油中溶解气体数据进行拟合,并对预测效果进行分析。同时,与XGBoos(textreme gradient boosting,XGBoost)模型预测效果进行对比,通过实例对比了两者在预测效果上的差异。展开更多
油中溶解气体分析(dissolved gas analysis,DGA)是评估变压器绝缘状态和分析变压器绝缘故障的重要依据。灰色多变量预测模型可使用从同一信号中提取的多个诊断指标同时进行预测,从系统的角度对各特征参数进行统一描述, 因而能够获得比...油中溶解气体分析(dissolved gas analysis,DGA)是评估变压器绝缘状态和分析变压器绝缘故障的重要依据。灰色多变量预测模型可使用从同一信号中提取的多个诊断指标同时进行预测,从系统的角度对各特征参数进行统一描述, 因而能够获得比较精确的预测结果。在现有文献研究成果的基础上,对灰色多变量模型做了进一步改进,将灰色多变量模型中的已知条件做了适当的拓广,提出了新的预测方法, 从而使新模型具有更高的精度。变压器油中七种特征气体的预测实例分析验证了该方法的有效性。展开更多
文摘油中溶解气体分析(dissolved gas analysis,DGA)监测技术数据质量的管理、维护及保障体系不完善,导致目前油中溶解气体数据质量存在一定缺陷。提出一种适合油中溶解气体时序数据的趋势预测方法,通过对油中溶解气体在线监测时序数据的特征进行深入分析,选择了泛化性能优越的统计模型,并借鉴加性模型的优点,对存在缺失值的油中溶解气体数据进行拟合,并对预测效果进行分析。同时,与XGBoos(textreme gradient boosting,XGBoost)模型预测效果进行对比,通过实例对比了两者在预测效果上的差异。
文摘油中溶解气体分析(dissolved gas analysis,DGA)是评估变压器绝缘状态和分析变压器绝缘故障的重要依据。灰色多变量预测模型可使用从同一信号中提取的多个诊断指标同时进行预测,从系统的角度对各特征参数进行统一描述, 因而能够获得比较精确的预测结果。在现有文献研究成果的基础上,对灰色多变量模型做了进一步改进,将灰色多变量模型中的已知条件做了适当的拓广,提出了新的预测方法, 从而使新模型具有更高的精度。变压器油中七种特征气体的预测实例分析验证了该方法的有效性。