油中溶解气体分析(dissolved gas analysis,DGA)监测技术数据质量的管理、维护及保障体系不完善,导致目前油中溶解气体数据质量存在一定缺陷。提出一种适合油中溶解气体时序数据的趋势预测方法,通过对油中溶解气体在线监测时序数据的特...油中溶解气体分析(dissolved gas analysis,DGA)监测技术数据质量的管理、维护及保障体系不完善,导致目前油中溶解气体数据质量存在一定缺陷。提出一种适合油中溶解气体时序数据的趋势预测方法,通过对油中溶解气体在线监测时序数据的特征进行深入分析,选择了泛化性能优越的统计模型,并借鉴加性模型的优点,对存在缺失值的油中溶解气体数据进行拟合,并对预测效果进行分析。同时,与XGBoos(textreme gradient boosting,XGBoost)模型预测效果进行对比,通过实例对比了两者在预测效果上的差异。展开更多
变压器油中溶解气体体积分数是表征变压器健康状态及故障特性的重要参量。因此,准确预测变压器油中溶解气体的体积分数,有助于及时把握变压器的状态演化与故障发展趋势。现有对气体体积分数预测的研究多集中在点预测方面,难以全面反映...变压器油中溶解气体体积分数是表征变压器健康状态及故障特性的重要参量。因此,准确预测变压器油中溶解气体的体积分数,有助于及时把握变压器的状态演化与故障发展趋势。现有对气体体积分数预测的研究多集中在点预测方面,难以全面反映气体体积分数的不确定性信息。针对此问题,提出了一种基于灰狼优化长短期记忆网络(long short⁃term memory based on grey wolf optimization,GWO⁃LSTM)与非参数核密度估计(non⁃parametric kernel density estimation,NKDE)的变压器油中溶解气体体积分数点—区间联合预测方法。首先,搭建变压器油中溶解气体体积分数点—区间联合预测模型的整体结构,阐述预测的实现过程;其次,利用自适应噪声完备集合经验模态分解方法将气体体积分数原始序列分解成若干个较为平缓的子序列,再基于GWO⁃LSTM对上述子序列分别进行点预测,并将所有子序列点预测结果叠加合成还原为气体体积分数点预测结果;然后,基于气体体积分数点预测结果及NKDE构造气体体积分数预测误差的概率密度估计函数,进而生成不同置信水平下的区间预测结果;最后,对所提方法进行算例分析,算例结果验证了所提方法的有效性。展开更多
文摘油中溶解气体分析(dissolved gas analysis,DGA)监测技术数据质量的管理、维护及保障体系不完善,导致目前油中溶解气体数据质量存在一定缺陷。提出一种适合油中溶解气体时序数据的趋势预测方法,通过对油中溶解气体在线监测时序数据的特征进行深入分析,选择了泛化性能优越的统计模型,并借鉴加性模型的优点,对存在缺失值的油中溶解气体数据进行拟合,并对预测效果进行分析。同时,与XGBoos(textreme gradient boosting,XGBoost)模型预测效果进行对比,通过实例对比了两者在预测效果上的差异。
文摘变压器油中溶解气体体积分数是表征变压器健康状态及故障特性的重要参量。因此,准确预测变压器油中溶解气体的体积分数,有助于及时把握变压器的状态演化与故障发展趋势。现有对气体体积分数预测的研究多集中在点预测方面,难以全面反映气体体积分数的不确定性信息。针对此问题,提出了一种基于灰狼优化长短期记忆网络(long short⁃term memory based on grey wolf optimization,GWO⁃LSTM)与非参数核密度估计(non⁃parametric kernel density estimation,NKDE)的变压器油中溶解气体体积分数点—区间联合预测方法。首先,搭建变压器油中溶解气体体积分数点—区间联合预测模型的整体结构,阐述预测的实现过程;其次,利用自适应噪声完备集合经验模态分解方法将气体体积分数原始序列分解成若干个较为平缓的子序列,再基于GWO⁃LSTM对上述子序列分别进行点预测,并将所有子序列点预测结果叠加合成还原为气体体积分数点预测结果;然后,基于气体体积分数点预测结果及NKDE构造气体体积分数预测误差的概率密度估计函数,进而生成不同置信水平下的区间预测结果;最后,对所提方法进行算例分析,算例结果验证了所提方法的有效性。