油中溶解气体分析(dissolved gas analysis,DGA)监测技术数据质量的管理、维护及保障体系不完善,导致目前油中溶解气体数据质量存在一定缺陷。提出一种适合油中溶解气体时序数据的趋势预测方法,通过对油中溶解气体在线监测时序数据的特...油中溶解气体分析(dissolved gas analysis,DGA)监测技术数据质量的管理、维护及保障体系不完善,导致目前油中溶解气体数据质量存在一定缺陷。提出一种适合油中溶解气体时序数据的趋势预测方法,通过对油中溶解气体在线监测时序数据的特征进行深入分析,选择了泛化性能优越的统计模型,并借鉴加性模型的优点,对存在缺失值的油中溶解气体数据进行拟合,并对预测效果进行分析。同时,与XGBoos(textreme gradient boosting,XGBoost)模型预测效果进行对比,通过实例对比了两者在预测效果上的差异。展开更多
油中溶解气体分析(dissolved gas analysis,DGA)是现场电力变压器故障诊断最常用的方法。然而,油中溶解气体含量较容易受到变压器结构、容量、故障位置以及故障程度等因素的影响,从而降低了变压器故障诊断的可靠性。为了提升变压器故...油中溶解气体分析(dissolved gas analysis,DGA)是现场电力变压器故障诊断最常用的方法。然而,油中溶解气体含量较容易受到变压器结构、容量、故障位置以及故障程度等因素的影响,从而降低了变压器故障诊断的可靠性。为了提升变压器故障诊断正确率,该文提出了基于支持向量机(support vector machie,SVM)和遗传算法(geneti calgorithm,GA)优选的DGA新特征参量。首先,以28个DGA比值为输入,建立了基于SVM的变压器故障诊断模型;其次,采用GA同时对SVM参数和DGA比值进行优化,得到9个优选DGA比值作为变压器故障诊断用新特征参量。对IEC TC 10故障数据库的诊断结果表明:DGA新特征参量的故障诊断正确率为84%,较常用的DGA含量和IEC比值的诊断正确率提高10%~25%;并且无论采用哪种特征参量,支持向量机的诊断结果均优于神经网络诊断模型。最后,采用DGA新特征参量对国内117组变压器的故障诊断正确率达到了87.18%,再次验证了该方法的有效性。展开更多
文摘油中溶解气体分析(dissolved gas analysis,DGA)监测技术数据质量的管理、维护及保障体系不完善,导致目前油中溶解气体数据质量存在一定缺陷。提出一种适合油中溶解气体时序数据的趋势预测方法,通过对油中溶解气体在线监测时序数据的特征进行深入分析,选择了泛化性能优越的统计模型,并借鉴加性模型的优点,对存在缺失值的油中溶解气体数据进行拟合,并对预测效果进行分析。同时,与XGBoos(textreme gradient boosting,XGBoost)模型预测效果进行对比,通过实例对比了两者在预测效果上的差异。