期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于GA-Elman的河流水位预测方法研究
被引量:
13
1
作者
要震
许继平
+1 位作者
孔建磊
刘松波
《长江科学院院报》
CSCD
北大核心
2018年第9期34-37,共4页
河流水位的变化过程是一个复杂的非线性过程,传统的神经网络预测存在误差较大、收敛速度慢、稳定性差等问题。为了实现对河流水位的有效预测,提出基于遗传算法(GA)优化Elman神经网络的河流水位预测模型。将GA与Elman网络进行有效结合,...
河流水位的变化过程是一个复杂的非线性过程,传统的神经网络预测存在误差较大、收敛速度慢、稳定性差等问题。为了实现对河流水位的有效预测,提出基于遗传算法(GA)优化Elman神经网络的河流水位预测模型。将GA与Elman网络进行有效结合,解决了单一Elman网络存在的不足。选取永定河的监测站点水文数据对河流水位进行预测与检验,并分别将其与Elman网络与BP网络预测结果进行对比。对比结果表明:GA-Elman水位预测模型的收敛速度快、精度高,可根据预测结果实现对水库、拦河闸合理调用,实现对河流水资源的有效配置,以满足灌溉、发电、防洪等工作的需求。
展开更多
关键词
河流
水位
预测模型
GA算法
ELMAN网络
BP网络
河流水资源有效配置
在线阅读
下载PDF
职称材料
题名
基于GA-Elman的河流水位预测方法研究
被引量:
13
1
作者
要震
许继平
孔建磊
刘松波
机构
北京工商大学计算机与信息工程学院
北京市水务局办公室
出处
《长江科学院院报》
CSCD
北大核心
2018年第9期34-37,共4页
基金
国家自然科学基金面上项目(51179002)
北京市市属高校创新能力提升计划项目(PXM2014_014213_000033)
北京市教委科技计划重点项目(KZ201510011011)
文摘
河流水位的变化过程是一个复杂的非线性过程,传统的神经网络预测存在误差较大、收敛速度慢、稳定性差等问题。为了实现对河流水位的有效预测,提出基于遗传算法(GA)优化Elman神经网络的河流水位预测模型。将GA与Elman网络进行有效结合,解决了单一Elman网络存在的不足。选取永定河的监测站点水文数据对河流水位进行预测与检验,并分别将其与Elman网络与BP网络预测结果进行对比。对比结果表明:GA-Elman水位预测模型的收敛速度快、精度高,可根据预测结果实现对水库、拦河闸合理调用,实现对河流水资源的有效配置,以满足灌溉、发电、防洪等工作的需求。
关键词
河流
水位
预测模型
GA算法
ELMAN网络
BP网络
河流水资源有效配置
Keywords
river water level
prediction model
GA algorithm
Elman network
BP network
effective allocation of river water resources
分类号
TV213.9 [水利工程—水文学及水资源]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于GA-Elman的河流水位预测方法研究
要震
许继平
孔建磊
刘松波
《长江科学院院报》
CSCD
北大核心
2018
13
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部