期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
我本爱茶
1
作者 刘焕群 《农业考古》 1999年第4期93-93,共1页
关键词 人生何处不相逢 沥滤出 奉献 太湖 绿茶 满壶 酽茶 诗圣 味道 岁月
在线阅读 下载PDF
Formation of passivation film during pyrrhotite bioleached by pure L. ferriphilum and mixed culture of L. ferriphilum and A. caldus 被引量:1
2
作者 顾帼华 杨慧沙 +3 位作者 胡可婷 王重庆 熊先学 李双棵 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期880-886,共7页
Bioleaching and electrochemical experiments were conducted to evaluate pyrrhotite dissolution in the presence of pure L.ferriphilum and mixed culture of L. ferriphilum and A. caldus. The results indicate that the pyrr... Bioleaching and electrochemical experiments were conducted to evaluate pyrrhotite dissolution in the presence of pure L.ferriphilum and mixed culture of L. ferriphilum and A. caldus. The results indicate that the pyrrhotite oxidation behavior is the preferential dissolution of iron accompanied with the massive formation of sulfur in the presence of L. ferriphilum, which significantly hinders the leaching efficiency. Comparatively, the leaching rate of pyrrhotite distinctly increases by 68% in the mixed culture of L. ferriphilum and A. caldus at the 3rd day. But, the accumulated ferric ions and high p H value produced by bioleaching process can give rise to the rapid formation of jarosite, which is the primary passivation film blocking continuous iron extraction during bioleaching by the mixed culture. The addition of A. caldus during leaching by L. ferriphilum can accelerate the oxidation rate of pyrrhotite, but not change the electrochemical oxidation mechanisms of pyrrhotite. XRD and SEM/EDS analyses as well as electrochemical study confirm the above conclusions. 展开更多
关键词 pyrrhotite passivation film bioleaching moderately thermophilic microorganisms electrochemistry
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部