黄土丘陵区是地质灾害高发频发的地区之一,亟需采用合适的评价因子和训练模型开展地质灾害易发性评价研究。以郑州“7·20”特大暴雨期间受灾最严重的乡镇巩义市康店镇为研究区,基于卫星遥感解译、实地调查、无人机航拍及相关资料收...黄土丘陵区是地质灾害高发频发的地区之一,亟需采用合适的评价因子和训练模型开展地质灾害易发性评价研究。以郑州“7·20”特大暴雨期间受灾最严重的乡镇巩义市康店镇为研究区,基于卫星遥感解译、实地调查、无人机航拍及相关资料收集,构建覆盖黄土界面、人类工程活动、水动力作用3个主控因素13个影响因子的评价体系,采用CatBoost模型、XGBoost模型和LightGBM模型共3种机器学习算法,开展地质灾害易发性评价研究,基于性能最优的机器学习模型,运用SHAP(shapley additive explanations)算法完成特征全局解释与依赖性分析。结果表明:CatBoost模型的精度高于其他模型(XGBoost和LightGBM),在AUC(area under curve)值、SHAP准确度、精确率、召回率、F_(1)分数和野外验证中均表现最优,其极高、高、中、低、极低易发区域面积占比分别为3.19%、1.40%、2.04%、5.93%、87.44%,极高、高易发区域主要分布在人类活动强烈的冲沟两侧,切坡建房是地质灾害发生的重要诱因。本次研究旨在优化建模思路,对建模过程的不确定性和可解释性进行研究,对机器学习的易发性决策机理进行解释分析,为豫西黄土丘陵区地质灾害防治提供科学依据。展开更多
文摘黄土丘陵区是地质灾害高发频发的地区之一,亟需采用合适的评价因子和训练模型开展地质灾害易发性评价研究。以郑州“7·20”特大暴雨期间受灾最严重的乡镇巩义市康店镇为研究区,基于卫星遥感解译、实地调查、无人机航拍及相关资料收集,构建覆盖黄土界面、人类工程活动、水动力作用3个主控因素13个影响因子的评价体系,采用CatBoost模型、XGBoost模型和LightGBM模型共3种机器学习算法,开展地质灾害易发性评价研究,基于性能最优的机器学习模型,运用SHAP(shapley additive explanations)算法完成特征全局解释与依赖性分析。结果表明:CatBoost模型的精度高于其他模型(XGBoost和LightGBM),在AUC(area under curve)值、SHAP准确度、精确率、召回率、F_(1)分数和野外验证中均表现最优,其极高、高、中、低、极低易发区域面积占比分别为3.19%、1.40%、2.04%、5.93%、87.44%,极高、高易发区域主要分布在人类活动强烈的冲沟两侧,切坡建房是地质灾害发生的重要诱因。本次研究旨在优化建模思路,对建模过程的不确定性和可解释性进行研究,对机器学习的易发性决策机理进行解释分析,为豫西黄土丘陵区地质灾害防治提供科学依据。