期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
利用可解释机器学习模型判别豫西巩义市康店镇黄土地质灾害易发性 被引量:1
1
作者 包峻帆 陈婕 +10 位作者 杨文涛 杨泽强 侯文青 陈恪 袁野 杨明权 景斐媛 刘淼昕 刘哲 张媛媛 黄灿 《科学技术与工程》 北大核心 2025年第15期6200-6219,共20页
黄土丘陵区是地质灾害高发频发的地区之一,亟需采用合适的评价因子和训练模型开展地质灾害易发性评价研究。以郑州“7·20”特大暴雨期间受灾最严重的乡镇巩义市康店镇为研究区,基于卫星遥感解译、实地调查、无人机航拍及相关资料收... 黄土丘陵区是地质灾害高发频发的地区之一,亟需采用合适的评价因子和训练模型开展地质灾害易发性评价研究。以郑州“7·20”特大暴雨期间受灾最严重的乡镇巩义市康店镇为研究区,基于卫星遥感解译、实地调查、无人机航拍及相关资料收集,构建覆盖黄土界面、人类工程活动、水动力作用3个主控因素13个影响因子的评价体系,采用CatBoost模型、XGBoost模型和LightGBM模型共3种机器学习算法,开展地质灾害易发性评价研究,基于性能最优的机器学习模型,运用SHAP(shapley additive explanations)算法完成特征全局解释与依赖性分析。结果表明:CatBoost模型的精度高于其他模型(XGBoost和LightGBM),在AUC(area under curve)值、SHAP准确度、精确率、召回率、F_(1)分数和野外验证中均表现最优,其极高、高、中、低、极低易发区域面积占比分别为3.19%、1.40%、2.04%、5.93%、87.44%,极高、高易发区域主要分布在人类活动强烈的冲沟两侧,切坡建房是地质灾害发生的重要诱因。本次研究旨在优化建模思路,对建模过程的不确定性和可解释性进行研究,对机器学习的易发性决策机理进行解释分析,为豫西黄土丘陵区地质灾害防治提供科学依据。 展开更多
关键词 黄土丘陵区 地质灾害易发 机器学习模型 shap 模型解释
在线阅读 下载PDF
基于卷积神经网络的液化预测模型及可解释性分析 被引量:2
2
作者 龙潇 孙锐 郑桐 《岩土力学》 EI CAS CSCD 北大核心 2024年第9期2741-2753,共13页
常规液化判别方法通常是半经验方法,存在人为因素干扰,成功率及均衡性不佳。现有的机器学习方法缺乏足够的样本支撑,存在一定的局限性。通过整合液化数据集,选取修正标准贯击数、细粒含量、土层深度、地下水位深度、总上覆应力、有效上... 常规液化判别方法通常是半经验方法,存在人为因素干扰,成功率及均衡性不佳。现有的机器学习方法缺乏足够的样本支撑,存在一定的局限性。通过整合液化数据集,选取修正标准贯击数、细粒含量、土层深度、地下水位深度、总上覆应力、有效上覆应力、门槛加速度、循环剪应力比、剪切波速、震级与地表峰值加速度11个液化特征建立卷积神经网络(convolutional neural network,简称CNN)模型。引入边界合成少数过采样技术消除不平衡数据集的影响。将CNN模型与随机森林模型、逻辑回归模型、支持向量机模型、极致梯度提升模型和规范方法进行对比,并结合沙普利加性解释(SHapley Additive exPlanations,简称SHAP)分析输入特征对预测结果的影响趋势。结果表明,CNN模型准确率达92.58%,各项指标均优于其他4种机器学习模型和规范方法。对SHAP结果分析可知,修正标贯击数小于15的土层液化概率较高,循环剪应力比CSR小于0.25的土层更不易液化。各因素的影响规律均符合现有认知,预测模型合理可靠。 展开更多
关键词 机器学习 液化预测 卷积神经网络 边界合成少数过采样技术 沙普利加解释(shap)
在线阅读 下载PDF
基于可解释机器学习模型的南宁市野火灾害易发性研究 被引量:4
3
作者 岳韦霆 任超 +2 位作者 梁月吉 郭玥 张胜国 《科学技术与工程》 北大核心 2024年第2期858-870,共13页
野火易发性评价对野火灾害的前期预防以及灾害管理决策的制定至关重要。目前野火易发性的研究主要集中于提高模型的预测精度,而往往忽略对模型的内部决策机制进行解释分析。为此,构建了一种基于可解释机器学习的野火易发性模型,并详细... 野火易发性评价对野火灾害的前期预防以及灾害管理决策的制定至关重要。目前野火易发性的研究主要集中于提高模型的预测精度,而往往忽略对模型的内部决策机制进行解释分析。为此,构建了一种基于可解释机器学习的野火易发性模型,并详细分析了各因子对野火易发性预测结果的影响。以南宁市历史野火样本为基础,综合考虑样本的空间分布特征,选取高程、归一化植被指数(normalized difference vegetation index, NDVI)、年均降雨和平均气温等18项评价因子,利用分类和回归树(calssification and regression tree, CART)、随机森林(random forest, RF)、轻量的梯度提升机(light gradient boosting machine, LGBM)和极致梯度提升(extreme gradient boosting, XGBoost)4种机器学习模型构建野火易发性预测模型。基于性能最优的易发性模型,运用沙普利加和解释(shapley additive explanations, SHAP)方法完成特征全局性解释、依赖性分析和典型样本的局部性分析。结果表明:XGBoost较其他模型拥有更优的预测性能,其极高易发区位于南宁市西北部、东部及南部,占全域面积的39.113%;野火灾害易发性主要受NDVI、年均降雨、土壤类型等9项因子的影响;对典型历史野火样本的局部性解释结果可为南宁市指定区域的野火灾害的治理提供针对性参考和指导。 展开更多
关键词 野火灾害 野火易发评价 机器学习模型 shap 模型解释
在线阅读 下载PDF
基于校准窗口集成与耦合市场特征的可解释双层日前电价预测 被引量:5
4
作者 刘慧鑫 沈晓东 +3 位作者 魏泽涛 刘友波 刘俊勇 白元宝 《中国电机工程学报》 EI CSCD 北大核心 2024年第4期1272-1285,I0003,共15页
随着电力市场之间耦合程度不断加深,只局限于单个市场内部的传统特征集不足以支撑高精度预测的需求。而且模型预测性能对校准窗口的选择敏感,而传统电价预测仅使用一个固定时间长度的数据集,同时预测模型的“黑盒”结构导致预测结果在... 随着电力市场之间耦合程度不断加深,只局限于单个市场内部的传统特征集不足以支撑高精度预测的需求。而且模型预测性能对校准窗口的选择敏感,而传统电价预测仅使用一个固定时间长度的数据集,同时预测模型的“黑盒”结构导致预测结果在工程应用中可信度偏低。针对上述问题,该文提出一种考虑校准窗口集成与耦合市场特征的可解释双层日前电价预测框架。内层框架为基于改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition,ICEEMDAN)的择优预测,首先分解原始电价序列,然后应用Lasso估计回归(lassoestimated autoregressive,LEAR)、长期和短期时间序列网络(long-term and short-term time-series networks,LSTNet)、卷积神经网络-长短记忆神经网络(convolutionalneuralnetworks-longshort termmemory,CNN-LSTM)、移动平均(autoregressive integrated moving average,ARIMA)和核极限学习机(kernel extreme learning machines,KELM)模型预测子序列并选择最优预测算法。外层框架为基于贝叶斯模型平均(bayes modelaveraging,BMA)的校准窗口集成预测,针对每个不同校准窗口长度数据集下的预测分配权重并集成得到预测电价。最后,通过可解释方法沙普利加性解释模型(shapley additiveexplanations,SHAP)分析耦合市场特征如何影响预测电价。该文通过北欧电力市场数据集的算例分析证明了所提算法的优越性和校准窗口集成方案的有效性。 展开更多
关键词 校准窗口集成 耦合市场特征 双层预测框架 改进自适应噪声完备集合经验模态分解(ICEEMDAN) 贝叶斯模型平均(BMA) 沙普利加解释模型(shap)
在线阅读 下载PDF
基于CatBoost-MOEAD的大直径泥水盾构姿态多目标预测与优化
5
作者 吴贤国 刘俊 +1 位作者 王静怡 覃亚伟 《中国安全科学学报》 CAS CSCD 北大核心 2024年第10期50-57,共8页
为避免盾构掘进过程中出现蛇形、轴线偏离等姿态异常问题影响施工安全,提出一种结合类别提升(CatBoost)算法和基于分解的多目标优化算法(MOEAD)的大直径泥水盾构姿态控制方法;构建一个盾构姿态预测模型,该模型包含19个输入参数和6个输... 为避免盾构掘进过程中出现蛇形、轴线偏离等姿态异常问题影响施工安全,提出一种结合类别提升(CatBoost)算法和基于分解的多目标优化算法(MOEAD)的大直径泥水盾构姿态控制方法;构建一个盾构姿态预测模型,该模型包含19个输入参数和6个输出参数,利用CatBoost算法构建输入参数与输出参数之间的非线性映射关系;采用沙普利加性解释法(SHAP)分析输入参数对盾构姿态的影响;结合多目标优化算法构建CatBoost-MOEAD盾构姿态多目标优化模型,将所提模型运用到武汉长江大直径泥水盾构隧道工程中,分析验证所提方法的适用性和有效性。结果表明:CatBoost预测模型能够高效地预测大直径泥水盾构的姿态,其中6个盾构姿态目标的决定系数范围为0.931~0.974,均方根误差范围为0.030~0.880,误差范围为0.039~1.057;对盾构姿态影响较大的施工参数中推进组推力对盾构姿态的影响最为显著;通过研发的CatBoost-MOEAD盾构姿态多目标优化方法,盾构姿态的优化效果显著,优化率可达38.86%。 展开更多
关键词 类别提升(CatBoost) 基于分解的多目标优化算法(MOEAD) 大直径泥水盾构 盾构姿态 多目标优化 沙普利加解释法(shap)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部