期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
基于特征工程优化和SHAP解释方法预测圆钢管约束混凝土短柱轴压承载力 被引量:1
1
作者 韦建刚 吴洵桢 +1 位作者 郑裔 杨艳 《东南大学学报(自然科学版)》 北大核心 2025年第5期1328-1336,共9页
以钢管约束混凝土(STCC)短柱为研究背景,聚焦于数据和特征的选择与前处理、模型的可视化应用以及特征重要性分析,探究机器学习“黑匣子”背后的预测过程。以154根圆STCC短柱为例,进行学习并预测其极限承载力N_(u)。讨论了STCC短柱结构... 以钢管约束混凝土(STCC)短柱为研究背景,聚焦于数据和特征的选择与前处理、模型的可视化应用以及特征重要性分析,探究机器学习“黑匣子”背后的预测过程。以154根圆STCC短柱为例,进行学习并预测其极限承载力N_(u)。讨论了STCC短柱结构中常见的9个特征的相关性以及冗余性,从13个机器学习模型中筛选出梯度提升树(GBDT)、随机森林(Random Forest)、极端梯度提升(XGBoost)和极端随机树(Extra Trees)四个最优模型对STCC的极限轴压承载力N_(u)进行预测,并采用SHAP可解释方法对4种模型进行可视化对比分析。研究表明:截面含钢率α在统计分析中方差趋于零且与径厚比B/t呈完全负相关关系;约束效应系数ζ在F检验中与N_(u)的显著性水平小于5%,斯皮尔曼、皮尔森以及互信息量相关性分析均表明其与N_(u)弱相关。通过SHAP方法对上述4种模型可视化发现,XGBoost在测试集上的表现尤为突出,其决定系数R^(2)(0.9626)、均方根误差(287.40 kN)、平均绝对误差(139.13 kN)以及平均绝对百分比误差(5.1%)均为4个模型中的最低值。此外,XGBoost在泛化能力和避免过拟合方面也表现出色,因此更适用于STCC短柱轴压承载力预测。 展开更多
关键词 机器学习 特征工程 shap解释方法 圆钢管约束混凝土 轴压承载力 特征重要性分析
在线阅读 下载PDF
基于XGBoost联合SHAP构建非瓣膜性心房颤动患者左心房血栓或自发显影的风险预测及可解释分析
2
作者 刘冰 郑楠 +2 位作者 刘静 李凤鹏 张军 《中国心血管杂志》 北大核心 2025年第5期530-536,共7页
目的 探讨基于极端梯度提升(XGBoost)联合沙普利加和解释(SHAP)构建非瓣膜性心房颤动(NVAF)患者左心房血栓(LAT)或自发显影(SEC)的风险预测模型及变量权重的可解释分析。方法 单中心、回顾性研究。连续选取2016年1月至2022年4月沧州市... 目的 探讨基于极端梯度提升(XGBoost)联合沙普利加和解释(SHAP)构建非瓣膜性心房颤动(NVAF)患者左心房血栓(LAT)或自发显影(SEC)的风险预测模型及变量权重的可解释分析。方法 单中心、回顾性研究。连续选取2016年1月至2022年4月沧州市中心医院接受经食管超声心动图检查的490例NVAF患者,其中男性268例(54.7%),按照7∶3比例由程序随机分为建模队列和验证队列。通过受试者工作特征(ROC)曲线、校准曲线、决策曲线分析及SHAP值评估XGBoost模型对LAT/SEC的预测价值,并与CHADS_(2)及CHA_2DS_(2)-VASc评分的曲线下面积(AUC)进行比较。结果 NVAF患者LAT/SEC的发生率为10.6%(52/490)。非LAT/SEC组与LAT/SEC组患者在高血压、糖尿病、脑卒中、外周血管疾病、充血性心力衰竭、非阵发性心房颤动、左心房内径增大、左心室舒张末期内径增大、左心室射血分数、估算肾小球滤过率下降及未抗凝治疗方面的差异均有统计学意义(均为P<0.05)。Logistic回归分析结果显示,糖尿病、脑卒中、外周血管疾病、非阵发性心房颤动、左心房内径增大、左心室舒张末期内径增大、左心室射血分数、估算肾小球滤过率下降及未抗凝治疗为NVAF患者发生LAT/SEC的独立危险因素(均为P<0.05)。ROC曲线分析结果表明,在建模队列中,XGBoost模型的AUC(0.952)高于CHADS_(2)(0.749)及CHA_2DS_(2)-VASc评分(0.790);在验证队列中, XGBoost模型的AUC (0.942)亦高于CHADS_(2)(0.695)及CHA_2DS_(2)-VASc评分(0.661),均为P<0.001。通过SHAP值解析XGBoost模型,SHAP值范围为0.090~0.653,其中左心室射血分数的权重最大。结论 XGBoost模型对NVAF患者LAT/SEC具有良好的预测价值,优于CHADS_(2)及CHA_2DS_(2)-VASc评分。 展开更多
关键词 心房颤动 左心房血栓 自发显影 极端梯度提升 沙普利加和解释
在线阅读 下载PDF
基于机器学习和SHAP算法的声波测井曲线重构及可解释性分析 被引量:7
3
作者 黎子豪 蒋恕 《地质科技通报》 北大核心 2025年第1期321-331,共11页
测井技术是查明地下岩性、地层及地质流体的关键技术手段,在石油勘探行业中发挥着至关重要的作用。然而,由于仪器损坏、井眼条件等因素,经常造成测井数据缺失、曲线不全等问题,传统多元线性回归或经验公式方法无法合理地构建测井曲线间... 测井技术是查明地下岩性、地层及地质流体的关键技术手段,在石油勘探行业中发挥着至关重要的作用。然而,由于仪器损坏、井眼条件等因素,经常造成测井数据缺失、曲线不全等问题,传统多元线性回归或经验公式方法无法合理地构建测井曲线间的关系模型使得曲线重构精度相对较低,机器学习算法虽能在大量数据之间找到最为合适的数据映射关系进而提高模型精度,但相较而言其所构建的黑箱模型无法得到良好的解释。近期,可解释性算法的运用使得机器学习在重构测井曲线中的应用更为合理。通过将支持向量回归(support vector regression,简称SVR),随机森林(random forest,简称RF)以及极限梯度提升(extreme gradient boosting,简称XGBoost)和传统多元线性回归方法(linear regression,简称LR)的对比对英国能源局22-30b-11号井声波测井曲线进行了模型重构并基于shapley additive explanations(SHAP)算法对XGBoost模型进行了解释。结果表明,XGBoost在测试集上的决定系数(R2)和均方误差(MSE)分别为0.996,6.371,优于SVR的0.990、15.755和RF的0.993、9.871,而传统多元线性回归方法则为0.969、48.895,表明XGBoost对声波时差曲线的重构具有更高的准确度和更好的泛化性能。创新性地采用SHAP算法对XGBoost黑箱模型的解释表明,在模型构建选择重要特征时,XGBoost模型采用地层温度数据作为特征明显合理于多元线性回归方法采用的井径测井数据。最后基于SHAP对模型进行了单点和全局特征交互解释。上述结果表明在声波测井曲线重构方面,机器学习算法明显优于传统的多元线性回归方法,并证明了SHAP算法在声波测井曲线重构机器学习模型解释方面的可行性,为后续机器学习在测井解释中的发展提供了新的思路。 展开更多
关键词 测井曲线重构 机器学习 模型解释 shap算法 声波测井
在线阅读 下载PDF
应用SHAP可解释机器学习模型估测森林蓄积量 被引量:1
4
作者 王元 王玥 +3 位作者 周宇琛 陈伏生 张绿水 刘牧 《东北林业大学学报》 北大核心 2025年第5期66-73,共8页
森林蓄积量是反映森林资源丰富程度的关键指标,精确估测森林蓄积量对于森林资源管理至关重要。以江西省林区为研究对象,运用谷歌地球引擎(Google Earth Engine)平台从Landsat 8遥感影像中提取多个植被指数、单波段及组合特征,并结合国... 森林蓄积量是反映森林资源丰富程度的关键指标,精确估测森林蓄积量对于森林资源管理至关重要。以江西省林区为研究对象,运用谷歌地球引擎(Google Earth Engine)平台从Landsat 8遥感影像中提取多个植被指数、单波段及组合特征,并结合国家森林资源连续清查的地面实测数据,分析不同影像特征参数在森林蓄积量反演中的贡献率。结果表明:对比多元线性回归、神经网络、随机森林和XGBoost模型估测森林蓄积量的精度,随机森林模型估测精度为93.3%,决定系数(R^(2))为0.9337,均方根误差为2.2323,平均绝对误为2.3395;与BP神经网络模型(R^(2)=0.8219)和XGBoost模型(R^(2)=0.7916)相比,模型拟合度和预测效果更佳,比多元线性回归模型(R^(2)=0.688)处理非线性关系的稳定性和可靠性更高。通过解释特征参数的相对重要性,揭示出平均胸径、郁闭度等特征对森林蓄积量影响显著,且随机森林模型中各因子间存在相互作用。 展开更多
关键词 shap解释模型 机器学习模型 森林蓄积量
在线阅读 下载PDF
基于XGBoost-SHAP的奶牛热应激预测与可解释性研究
5
作者 严格齐 焦洪超 +3 位作者 林海 李浩 施正香 王朝元 《农业机械学报》 北大核心 2025年第4期408-414,共7页
为提高奶牛热应激预测模型的准确性和可解释性,本研究采用奶牛红外体表温度和热应激潜在影响因子作为特征,基于极限梯度提升算法(XGBoost)构建个体热应激预测模型,并引入基于Shapley值的可加性特征归因算法(SHapley Additive exPlanatio... 为提高奶牛热应激预测模型的准确性和可解释性,本研究采用奶牛红外体表温度和热应激潜在影响因子作为特征,基于极限梯度提升算法(XGBoost)构建个体热应激预测模型,并引入基于Shapley值的可加性特征归因算法(SHapley Additive exPlanations,SHAP)解释预测结果。选取了躯干、前乳(UD)、脸部以及眼部的最高温度(IRTmax)和平均温度(IRTave)作为体表温度变量,并结合环境参数和奶牛相关变量构建了特征子集。结果显示,热应激情况下,奶牛4个部位的IRTmax和IRTave均显著高于无热应激情况(p<0.01)。对比随机森林、自适应提升和梯度提升树模型,结果表明,使用前乳平均温度(IRTave_UD)作为输入特征,并经过网格搜索优化的XGBoost模型在预测奶牛热应激方面表现最佳,其准确率为80.8%,F1值为79.2%,ROC曲线下面积(AUC)为0.873。SHAP分析表明,前乳平均温度(IRTave_UD)与热应激发生呈正相关,而泌乳天数与其呈负相关,这两者可作为奶牛热应激识别的关键指标。研究结果可为奶牛舍夏季精准降温管理提供技术支持和参考。 展开更多
关键词 奶牛 热应激 机器学习 解释 XGBoost shap
在线阅读 下载PDF
基于XGBoost与SHAP分析的可解释性故障诊断方法研究
6
作者 李开平 张凤丽 +1 位作者 黄祖广 王金江 《制造技术与机床》 北大核心 2025年第6期199-208,共10页
针对现有智能故障诊断方法存在特征输入单一、故障难以提取、模型可解释性较差等问题,提出一种基于XGBoost(extreme gradient boosting)与SHAP(SHapley Additive exPlanations)分析的可解释性故障诊断方法。首先,采用传统信号处理方法... 针对现有智能故障诊断方法存在特征输入单一、故障难以提取、模型可解释性较差等问题,提出一种基于XGBoost(extreme gradient boosting)与SHAP(SHapley Additive exPlanations)分析的可解释性故障诊断方法。首先,采用传统信号处理方法完成多域特征的提取。其次,基于XGBoost集成算法构建故障诊断模型,并根据XGBoost内嵌评估指标对模型进行初步特征解释。最后,运用Tree SHAP方法对诊断模型进行特征解释分析,探究重要特征对轴承故障类别趋势的影响关系,分析特征之间的依赖交互效应,直观、透明地揭示模型的诊断机制。通过实验对比XGBoost与其他传统机器学习方法,本模型在多维评价指标中综合表现更为突出,且具有较强的精确性,故障诊断准确率高达99.62%,具备良好的实际应用价值。 展开更多
关键词 解释性故障诊断方法 多域特征 XGBoost集成算法 Tree shap 特征解释
在线阅读 下载PDF
基于可解释机器学习的混凝土重力坝变形安全监控模型 被引量:2
7
作者 程琳 袁喜娜 +2 位作者 马春辉 贾冬焱 徐笑颜 《水利水电科技进展》 北大核心 2025年第3期77-85,共9页
针对目前基于机器学习的大坝安全监控模型无法给出模型预测解释的问题,引入SHAP值理论,并结合LightGBM模型,建立了一种具备可解释性的混凝土重力坝变形安全监控模型,且该模型可以量化每个影响因子的具体贡献。工程实例验证结果表明,该... 针对目前基于机器学习的大坝安全监控模型无法给出模型预测解释的问题,引入SHAP值理论,并结合LightGBM模型,建立了一种具备可解释性的混凝土重力坝变形安全监控模型,且该模型可以量化每个影响因子的具体贡献。工程实例验证结果表明,该模型考虑了变形与环境量之间复杂的非线性关系,更接近真实情况,不仅具有良好的拟合精度和预测精度,还能对模型进行全局和局部的解释。 展开更多
关键词 混凝土重力坝 变形安全监控 解释机器学习 shap值理论 LightGBM模型
在线阅读 下载PDF
基于CatBoost和SHAP的高级别自动驾驶车辆非预期停车冲突风险预测
8
作者 刘擎超 王瑞海 +2 位作者 蔡英凤 王海 陈龙 《汽车安全与节能学报》 北大核心 2025年第1期170-180,共11页
针对高级别自动驾驶车辆非预期停车引发的交通冲突及其环境影响问题,现有研究缺乏对风险特征交互的捕获和可解释性评估。本研究提出了一种基于CatBoost和SHAP的风险预测及解释模型,通过分析城市中心、住宅区和郊区交通网络的接管次数,... 针对高级别自动驾驶车辆非预期停车引发的交通冲突及其环境影响问题,现有研究缺乏对风险特征交互的捕获和可解释性评估。本研究提出了一种基于CatBoost和SHAP的风险预测及解释模型,通过分析城市中心、住宅区和郊区交通网络的接管次数,构建了冲突风险预测模型。结果表明,接管次数在城市中心、住宅区和郊区分别为161次、227次和164次,最高单路段接管次数分别为11次、11次和16次;模型预测精度达93%以上。SHAP分析显示,前后车辆间相对速度和相对位置对冲突风险的影响显著。研究结果对提升自动驾驶车辆的可靠性和安全性具有重要意义。 展开更多
关键词 冲突风险 交通排放 高级别自动驾驶 CatBoost算法 shap解释模型
在线阅读 下载PDF
土石方开挖钻孔效率预测可解释超级学习器集成学习模型
9
作者 王晓玲 胡亦宁 +3 位作者 张君 衣传宝 张捷 李希稷 《天津大学学报(自然科学与工程技术版)》 北大核心 2025年第4期331-342,共12页
动态预测钻孔效率并探究不同因素对钻孔效率的影响程度,对土石方开挖进度分析和风险管理具有重要意义.然而,现有土石方钻孔效率分析大都依赖人工经验,少数机器学习模型无法解释不同因素对钻孔效率的影响程度.针对上述问题,本研究提出土... 动态预测钻孔效率并探究不同因素对钻孔效率的影响程度,对土石方开挖进度分析和风险管理具有重要意义.然而,现有土石方钻孔效率分析大都依赖人工经验,少数机器学习模型无法解释不同因素对钻孔效率的影响程度.针对上述问题,本研究提出土石方开挖钻孔效率预测可解释超级学习器(SL)集成学习模型.通过强化学习中的Q学习改进猎人猎物优化算法局部搜索过程与全局信息进行交互的能力,提出Q学习改进的猎人猎物优化(QIHPO)算法对SL的n_estimators、learning_rate、max_depth等超参数进行优化,进而利用SL能够通过具有互补特征的异构基学习器捕捉样本特征差异性的优势,建立基于QIHPO优化的超级学习器土石方开挖钻孔效率预测QIHPO-SL模型,以揭示地质、作业、环境和机械特性等众多因素与钻孔效率的复杂非线性映射关系.进一步将QIHPO-SL集成学习算法与可解释机器学习框架下的沙普利加性解释(SHAP)理论相结合,挖掘影响钻孔效率的关键特征,并解释不同因素对钻孔效率的影响程度.案例分析表明:QIHPO-SL具有较高的预测精度,相较于QIHPO-XGB、QIHPO-RF和SL等基准模型,本文所提方法的预测精度分别提高了12.94%、12.02%和1.58%,且SHAP理论提高了模型的可解释性和预测结果的可信度,为钻孔效率预测及致因分析提供了新思路和新途径. 展开更多
关键词 钻孔效率 沙普利加解释 超级学习器 强化学习
在线阅读 下载PDF
基于XGBoost−SHAP的综采工作面上隅角瓦斯溯源模型
10
作者 盛武 王灵子 《工矿自动化》 北大核心 2025年第6期21-27,140,共8页
针对目前综采工作面上隅角瓦斯浓度预测模型由于“黑盒”结构导致内部运行逻辑未知、预测结果可解释性弱的问题,提出一种基于XGBoost−SHAP的综采工作面上隅角瓦斯溯源模型。对综采工作面瓦斯涌出浓度关联监测数据进行相关分析,筛选出特... 针对目前综采工作面上隅角瓦斯浓度预测模型由于“黑盒”结构导致内部运行逻辑未知、预测结果可解释性弱的问题,提出一种基于XGBoost−SHAP的综采工作面上隅角瓦斯溯源模型。对综采工作面瓦斯涌出浓度关联监测数据进行相关分析,筛选出特征变量;基于XGBoost搭建上隅角瓦斯浓度预测模型,引入SHAP算法计算每个特征变量对预测结果的贡献值,增强模型透明度,为XGBoost提供全局性解释;最后利用现场多源传感监测数据对模型性能进行验证。实例分析结果表明:①XGBoost模型的决定系数R^(2)、平均绝对误差(MAE)、均方根误差(RMSE)分别为0.93,0.007,0.008,相较于随机森林(RF)、支持向量回归(SVR)和梯度提升决策树(GBDT),拟合优度最高,误差最低。②XGBoost模型的平均相对误差为4.478%,相较于对比模型,具有较高的精度与较好的泛化性能。③依据各输入特征的平均绝对SHAP值,工作面T1瓦斯浓度对上隅角瓦斯浓度影响最大,工作面上隅角瓦斯抽采管道内瓦斯浓度次之,回采煤层瓦斯含量、回采煤层顶板压力等紧随其后,说明XGBoost能捕捉变量间的非线性关系和交互作用,SHAP算法可为XGBoost模型提供全局性解释。 展开更多
关键词 瓦斯浓度预测 上隅角瓦斯溯源 XGBoost模型 shap 解释
在线阅读 下载PDF
利用可解释机器学习模型判别豫西巩义市康店镇黄土地质灾害易发性 被引量:2
11
作者 包峻帆 陈婕 +10 位作者 杨文涛 杨泽强 侯文青 陈恪 袁野 杨明权 景斐媛 刘淼昕 刘哲 张媛媛 黄灿 《科学技术与工程》 北大核心 2025年第15期6200-6219,共20页
黄土丘陵区是地质灾害高发频发的地区之一,亟需采用合适的评价因子和训练模型开展地质灾害易发性评价研究。以郑州“7·20”特大暴雨期间受灾最严重的乡镇巩义市康店镇为研究区,基于卫星遥感解译、实地调查、无人机航拍及相关资料收... 黄土丘陵区是地质灾害高发频发的地区之一,亟需采用合适的评价因子和训练模型开展地质灾害易发性评价研究。以郑州“7·20”特大暴雨期间受灾最严重的乡镇巩义市康店镇为研究区,基于卫星遥感解译、实地调查、无人机航拍及相关资料收集,构建覆盖黄土界面、人类工程活动、水动力作用3个主控因素13个影响因子的评价体系,采用CatBoost模型、XGBoost模型和LightGBM模型共3种机器学习算法,开展地质灾害易发性评价研究,基于性能最优的机器学习模型,运用SHAP(shapley additive explanations)算法完成特征全局解释与依赖性分析。结果表明:CatBoost模型的精度高于其他模型(XGBoost和LightGBM),在AUC(area under curve)值、SHAP准确度、精确率、召回率、F_(1)分数和野外验证中均表现最优,其极高、高、中、低、极低易发区域面积占比分别为3.19%、1.40%、2.04%、5.93%、87.44%,极高、高易发区域主要分布在人类活动强烈的冲沟两侧,切坡建房是地质灾害发生的重要诱因。本次研究旨在优化建模思路,对建模过程的不确定性和可解释性进行研究,对机器学习的易发性决策机理进行解释分析,为豫西黄土丘陵区地质灾害防治提供科学依据。 展开更多
关键词 黄土丘陵区 地质灾害易发性 机器学习模型 shap 模型解释
在线阅读 下载PDF
融合多源异构数据的ICO欺诈预测与可解释分析模型 被引量:3
12
作者 卢加荣 廖彬 +1 位作者 刘怡 陈海龙 《计算机应用研究》 北大核心 2025年第2期357-364,共8页
为了解决首次代币发行(ICO)欺诈检测研究中存在的特征建模单一、模型缺乏可解释性等问题,提出一种融合多源异构数据的ICO欺诈预测和可解释分析模型IICOFP。首先,融合ICO项目基本信息、评级分数、社交媒体等多源异构数据,通过Lasso特征... 为了解决首次代币发行(ICO)欺诈检测研究中存在的特征建模单一、模型缺乏可解释性等问题,提出一种融合多源异构数据的ICO欺诈预测和可解释分析模型IICOFP。首先,融合ICO项目基本信息、评级分数、社交媒体等多源异构数据,通过Lasso特征选择和Tomek-Link欠采样更有效地实现对ICO的特征建模;其次,基于GBDT算法训练ICO欺诈预测模型,并引入SHAP框架从多个角度分析欺诈型ICO的影响因素,有力增强模型的可解释性。实验结果表明,该模型的准确率、精确率、召回率、F 1分数和AUC值分别达到87.76%、85.37%、90.52%、87.87%和87.82%,各项性能比已有的最佳模型提高了约2%~10%,验证了融合多源异构数据进行特征建模在ICO欺诈预测中的关键作用(实验数据及代码:https://github.com/Lujiarong1203/IICOFP)。 展开更多
关键词 首次代币发行(ICO) 欺诈预测 GBDT模型 shap框架 解释
在线阅读 下载PDF
基于机器学习和夏普利加法解释(SHAP)模型的饲料原料价格可解释预测 被引量:1
13
作者 吴展 王春晓 《饲料研究》 CAS 北大核心 2023年第23期178-181,共4页
文章旨在评估机器学习模型的性能,提出一种饲料原料价格可解释预测的框架。选取豆粕为饲料产品原材料的代表品种,基于2006年1月至2023年4月的豆粕期货月度结算价数据,采用反向传播(BP)神经网络、梯度提升决策树(GBDT)和极限梯度提升(XGB... 文章旨在评估机器学习模型的性能,提出一种饲料原料价格可解释预测的框架。选取豆粕为饲料产品原材料的代表品种,基于2006年1月至2023年4月的豆粕期货月度结算价数据,采用反向传播(BP)神经网络、梯度提升决策树(GBDT)和极限梯度提升(XGBoost)等3种机器学习算法进行训练测试,使用贝叶斯优化算法调整各模型参数,选择性能最优模型结合SHAP模型解析预测结果。结果显示,贝叶斯优化的极限梯度提升算法(BO-XGBoost)模型的预测性能显著优于其他基准模型,其测试集的平均绝对百分比误差(MAPE)和决定系数(R2)分别为0.03和0.892,模型精度较高;滞后一期豆油期货结算价对豆粕价格具有显著正向影响。研究表明,该模型具有良好的应用前景,可为饲料相关企业管理者决策和有关部门制定政策提供一定参考。 展开更多
关键词 机器学习 shap模型 贝叶斯优化 解释预测 饲料原料价格
在线阅读 下载PDF
基于无人机图像和SHAP特征筛选的小麦田间产量预测方法研究
14
作者 朱志畅 葛焱 +4 位作者 臧晶荣 李庆 金时超 徐焕良 翟肇裕 《麦类作物学报》 北大核心 2025年第2期264-274,共11页
为了探寻适宜的小麦产量预测模型并提高其精度,从冬小麦灌浆期的无人机多光谱和RGB图像中提取了14种光谱参数和28种形态参数作为特征变量,利用线性回归、随机森林、神经网络等10种机器学习方法构建小麦田间产量预测模型,并比较了模型间... 为了探寻适宜的小麦产量预测模型并提高其精度,从冬小麦灌浆期的无人机多光谱和RGB图像中提取了14种光谱参数和28种形态参数作为特征变量,利用线性回归、随机森林、神经网络等10种机器学习方法构建小麦田间产量预测模型,并比较了模型间预测能力的差异;同时,引入机器学习事后可解释性方法SHAP对输入的特征变量进行重要性分析和筛选,了解其提高模型预测能力的效果。结果表明:(1)10种机器学习模型中,误差逆传播神经网络BPNN的产量预测表现最好(r^(2)=0.826,RMSE=0.094 t·hm^(-2));(2)根据SHAP确定的特征变量重要性排序,花青素反射指数ARI和三维冠层体积Volume对于预测结果的影响最大,占全部特征重要性总和的45.48%;(3)经过SHAP特征筛选后,确定了在BPNN产量预测模型上表现最优的9个特征变量,其预测结果r^(2)为0.865,RMSE为0.075 t·hm^(-2),比使用全特征的BPNN和事前Pearson相关性分析方法在预测精度上均有提升。因此,在优选产量预测模型基础上,可采用SHAP机制对特征变量的重要性进行筛选和分析,以此进一步提高田间小麦产量预测精度。 展开更多
关键词 小麦 无人机图像 机器学习 shap加性解释方法 产量预测
在线阅读 下载PDF
解释纠偏框架:一种基于标准解释的归因分数生成方法
15
作者 邢钟毓 梁嘉旋 +3 位作者 余国先 王峻 郭茂祖 崔立真 《计算机学报》 北大核心 2025年第4期949-970,共22页
模型可解释性研究面临一个关键挑战:对于同一数据集,不同模型尽管能达到相似的预测性能,但受训练过程中随机因素等变量影响,其输入特征的重要性评分(归因分数解释)存在显著不一致,这降低了解释的可信度。针对此问题,本文首先从理论上探... 模型可解释性研究面临一个关键挑战:对于同一数据集,不同模型尽管能达到相似的预测性能,但受训练过程中随机因素等变量影响,其输入特征的重要性评分(归因分数解释)存在显著不一致,这降低了解释的可信度。针对此问题,本文首先从理论上探讨了解释不一致与模型不确定性因素之间的联系,证明了归因解释中的SHAP(SHapley Additive exPlanation)方法在相似预测模型中的不确定性上界。在此基础上,我们通过实验深入研究了模型集合中模型训练随机因素等变量对特征归因方法的影响,发现模型不确定导致的解释不确定性普遍存在,而SHAP方法由于其上界的影响不确定性较低。据此,我们提出了一种基于不同模型的标准解释生成稳定归因分数解释的纠偏框架ASGM(Attribution Score Generation Method),以减少归因分数解释的不一致,提升模型解释的稳定性和可信度。该框架通过检测少量抽样模型解释与大量模型生成标准解释之间的差异,利用校正偏差的深度学习模型,生成代表规格不足集或罗生门效应集的归因分数解释,并能预测规格不足集解释间的不确定性。实验结果表明,ASGM可以生成受模型(尤其是随机因素)影响较小的解释,生成解释的质量高于对模型集合解释排名的均值,接近标准解释。此外,与标准解释相比,ASGM在罗生门效应集上的计算时间减少了20%~30%,在规格不足集上减少了17%~48%,这些结果验证了ASGM可有效提升解释稳定性和可信度。 展开更多
关键词 模型不确定性 解释人工智能 规格不足集 罗生门效应集 shap方法
在线阅读 下载PDF
企业持续经营危机预测及其可解释性研究
16
作者 曹耀威 宋志鹏 张友棠 《财会通讯》 北大核心 2025年第16期122-128,140,共8页
在经济环境愈发不确定的情况下,企业的持续经营能力越来越受到审计师以及投资者等利益相关者的关注。为预测企业持续经营危机,并对预测结论进行解释,文章使用2006—2022年上市公司数据,采用Stacking算法集成随机森林、梯度提升树和极限... 在经济环境愈发不确定的情况下,企业的持续经营能力越来越受到审计师以及投资者等利益相关者的关注。为预测企业持续经营危机,并对预测结论进行解释,文章使用2006—2022年上市公司数据,采用Stacking算法集成随机森林、梯度提升树和极限梯度提升树,构建持续经营危机预测模型,并运用SHAP算法揭示模型预测行为的机理。研究证明Stacking模型在高度不平衡数据集上对企业持续经营危机的预测在AUC、F-measure、Precision、Recall、Specificity均获得最优效果。SHAP揭示预测结论的判断依据,得出留存收益资产比、资产负债率、总资产和管理层语调对企业持续经营危机的影响最大,为利益相关者进行决策提供精细化信息。 展开更多
关键词 持续经营危机预测 解释模型 STACKING shap
在线阅读 下载PDF
基于XGBoost-SHAP的串列布置三圆柱水动力学特性参数预测
17
作者 钟家文 周水根 +1 位作者 宋金泽 朱红钧 《力学学报》 北大核心 2025年第4期843-853,共11页
基于极限梯度提升(eXtreme Gradient Boosting,XGBoost)算法和SHAP(SHapley Additive exPlanations)分析对低雷诺数下串列三圆柱绕流的水动力学特性参数进行了机器学习研究,采用开源计算流体力学软件OpenFOAM模拟并建立了在不同工况下... 基于极限梯度提升(eXtreme Gradient Boosting,XGBoost)算法和SHAP(SHapley Additive exPlanations)分析对低雷诺数下串列三圆柱绕流的水动力学特性参数进行了机器学习研究,采用开源计算流体力学软件OpenFOAM模拟并建立了在不同工况下各圆柱的升阻力和涡脱频率数据集.对比决定系数、绝对误差和误差率等参数,基于XGBoost算法建立的机器学习模型经过超参数优化后具有良好的预测性能,在对数据集范围之外的文献参数预测中,最大误差率为16.03%,经过二次学习后可降低至0.71%.利用SHAP分析分别解释模型在整体和局部的预测结果,得到雷诺数、上游间距和下游间距分别对串列三圆柱的9个水动力特征参数累计平均贡献度,并开展了归因分析.此外,捕捉到输入特征局部贡献值的异变,结合流场结构分析发现,当上游间距为2、下游间距从2增大为3时,下游间距对下游圆柱的平均阻力的SHAP值由−0.22增大到0.03,对升力均方根值的SHAP值由−0.22增大到0.04,尾流干涉模式由拓展体变为交替再附着模式.当上游间距为6时,下游间距从2增大到6时,SHAP局部分析量化了双排涡结构中下游圆柱的水动力特征变化规律. 展开更多
关键词 串列三圆柱 升阻力 涡脱频率 极限梯度提升 沙普利加解释
在线阅读 下载PDF
基于TW-Focal Loss的债券违约预测及可解释性分析 被引量:1
18
作者 闵继源 鲁统宇 +1 位作者 袁伟 许文甫 《系统管理学报》 北大核心 2025年第3期790-807,共18页
债券违约预测需应对样本不平衡、概念漂移及困难样本识别在内的多重问题。然而,现有的基础模型与解决单一问题的改进模型难以满足这种需求。为此,基于交叉熵损失提出一种改进的复合损失函数(TW-Focal Loss),通过加入改进因子来调节不同... 债券违约预测需应对样本不平衡、概念漂移及困难样本识别在内的多重问题。然而,现有的基础模型与解决单一问题的改进模型难以满足这种需求。为此,基于交叉熵损失提出一种改进的复合损失函数(TW-Focal Loss),通过加入改进因子来调节不同样本的损失权重,使得模型能有效学习违约样本、新样本和困难样本。利用2014~2022年我国公开发行的信用债数据,以XGBoost为实验模型,结果表明,TW-Focal Loss使模型在降低第2类错误率的同时,能够有效控制第1类错误率,性能评估指标Gmean相比于交叉熵损失提升46.4%,相比于专注不平衡改进的加权交叉熵损失提升12.9%。进一步,通过SHAP解释分析了不同损失函数下模型的特征重要性分配比例和部分依赖曲线,发现模型可以通过改变特征的影响程度和影响区间来控制对违约样本的识别。该研究为债券违约预测模型的设计与逻辑探索提供了新思路。 展开更多
关键词 债券违约预测 交叉熵损失 不平衡样本 概念漂移 shap解释
在线阅读 下载PDF
基于随机森林与SHAP算法的致密砂岩气暂堵效果的影响因素分析
19
作者 黄浩 车恒达 +3 位作者 孔祥伟 辛富斌 向九洲 吉俊杰 《科学技术与工程》 北大核心 2025年第26期11135-11143,共9页
为深入研究地质因素、分段及射孔参数、压裂施工因素对簇间暂堵效果的影响,通过构建暂堵效果量化模型和公式,收集苏里格区块暂堵井数据76组,融合随机森林和SHAP(Shapley additive explanations)值算法,建立暂堵效果算法模型。经过对暂... 为深入研究地质因素、分段及射孔参数、压裂施工因素对簇间暂堵效果的影响,通过构建暂堵效果量化模型和公式,收集苏里格区块暂堵井数据76组,融合随机森林和SHAP(Shapley additive explanations)值算法,建立暂堵效果算法模型。经过对暂堵效果量化模型和公式、暂堵效果算法模型验证,发现暂堵效果量化值与产气贡献率正相关,P=0.037,证明暂堵效果量化模型和公式的准确性高;又因暂堵效果算法模型中,训练集与测试集的MSE、MAE、R^(2)相差微小,证明该模型的泛化能力较强且准确性高。在暂堵效果算法模型的基础之上,开展暂堵效果的影响因素分析,结果表明:总段数、渗透率、暂堵球数量、簇间距和砂比这5个因素对于暂堵效果的影响占比最大。进一步分析单影响因素,发现随总段数增加,暂堵效果增加的规律只适用于直井,对水平井不适用;随渗透率增加,暂堵效果变差;暂堵球数量<50个、簇间距>20 m、砂比介于18%~20%,暂堵效果均可达到正向增长。研究结果可为苏里格等气田现场暂堵作业设计提供借鉴和参考。 展开更多
关键词 苏里格气田 致密砂岩气 暂堵效果 随机森林 shap(shapley additive explanations)值 模型解释
在线阅读 下载PDF
机电作动器故障诊断方法及其可解释性分析
20
作者 姚智敏 陈换过 苏世弘 《机电工程》 北大核心 2025年第10期1837-1850,1887,共15页
针对现存机电作动器(EMA)故障诊断方法中决策过程不清晰和可解释性不足的问题,提出了一种基于轻量级梯度提升机(LightGBM)的故障诊断方法,并利用SHAP框架对诊断模型进行了可解释性分析。首先,提取了多源信号的时域和频域特征,并结合随... 针对现存机电作动器(EMA)故障诊断方法中决策过程不清晰和可解释性不足的问题,提出了一种基于轻量级梯度提升机(LightGBM)的故障诊断方法,并利用SHAP框架对诊断模型进行了可解释性分析。首先,提取了多源信号的时域和频域特征,并结合随机森林(RF)和最大互信息数(MIC)对特征进行了筛选,降低了特征集和模型的复杂性;然后,提出了一种基于黑翅鸢优化算法(BKA)的LightGBM故障诊断方法,使用BKA对LightGBM模型的多参数进行了同步优化,对故障类型进行了判断;最后,引入SHAP框架对故障诊断模型进行了可解释性分析,直观展示了故障诊断决策过程及其关键影响因素。研究结果表明:BKA-LightGBM在仿真数据上的诊断准确率可达99.69%,在试验数据上的诊断准确率达到97.60%,不仅在故障识别精度方面表现优越,还能直观揭示特征对模型决策的影响过程和重要性,展现出优异的准确性、鲁棒性和可解释性。 展开更多
关键词 机电作动器 黑翅鸢优化算法 轻量级梯度提升机 解释 shap框架 随机森林 最大互信息数
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部