期刊文献+
共找到308篇文章
< 1 2 16 >
每页显示 20 50 100
基于沙丘猫优化变分模态分解和蜣螂优化算法同步优化特征选择的齿轮泵磨损故障诊断
1
作者 问亚鹏 张佳奇 +3 位作者 郭锐 杨锦昌 何丝丝 张浩 《液压与气动》 北大核心 2025年第8期65-78,共14页
数据驱动的外啮合齿轮泵(以下简称齿轮泵)故障诊断中,存在实际作业中易受噪声干扰、故障特征冗余以及故障特征选择与分类器参数寻优繁琐问题,为此提出一种基于沙丘猫优化变分模态分解和蜣螂优化算法同步优化特征选择的齿轮泵磨损故障诊... 数据驱动的外啮合齿轮泵(以下简称齿轮泵)故障诊断中,存在实际作业中易受噪声干扰、故障特征冗余以及故障特征选择与分类器参数寻优繁琐问题,为此提出一种基于沙丘猫优化变分模态分解和蜣螂优化算法同步优化特征选择的齿轮泵磨损故障诊断方法。首先,搭建齿轮泵故障试验台获取原始故障数据,采用沙丘猫优化变分模态分解方法对齿轮泵4种磨损故障的振动信号进行降噪重构;然后,提取故障磨损4种重构信号的时域、频域和时频域统计特征共26种,并组成特征层;最后,基于蜣螂优化算法同步优化特征选择对故障特征集进行特征选择,同时优化支持向量机分类器参数,实现齿轮泵的磨损故障类型识别。结果显示,该齿轮泵故障诊断方法准确率高达99.6%,耗时仅49.8 s,具有较高的诊断精度和运算效率。 展开更多
关键词 齿轮泵 故障诊断 同步优化特征选择 蜣螂优化算法 沙丘猫优化变分模态分解
在线阅读 下载PDF
基于参数优化变分模态分解的信号降噪方法
2
作者 何玉洁 李新娥 贺俊 《现代电子技术》 北大核心 2025年第2期70-76,共7页
针对心电信号中肌电干扰噪声难以去除的问题,提出一种基于参数优化变分模态分解(VMD)的信号降噪方法。通过设计动态边界策略和反向种群生成方式,对白鲸优化(BWO)算法进行改进;采用改进白鲸优化算法对VMD参数自适应寻优,确定分解层数K与... 针对心电信号中肌电干扰噪声难以去除的问题,提出一种基于参数优化变分模态分解(VMD)的信号降噪方法。通过设计动态边界策略和反向种群生成方式,对白鲸优化(BWO)算法进行改进;采用改进白鲸优化算法对VMD参数自适应寻优,确定分解层数K与惩罚因子α;对含噪心电信号进行分解,得到k个本征模态函数(IMF)分量,同时采用相关系数法进行有效模态和含噪模态识别;对噪声主导的模态分量采用小波阈值降噪,并重构信号主导模态与降噪后模态。对仿真信号与含真实肌电干扰的心电信号进行降噪处理,实验结果表明,所提方法去噪效果优于小波阈值去噪法、EMD法、EMD-小波阈值去噪法,真实含噪的心电信号经该方法去噪后自相关系数可达0.91以上。 展开更多
关键词 模态分解 信号降噪 参数优化 改进白鲸优化算法 心电信号 IMF 小波阈值降噪 肌电干扰
在线阅读 下载PDF
基于改进变分模态分解的飞轮储能辅助火电二次调频控制策略
3
作者 王玮 赵俊杰 +1 位作者 高嵩 房方 《动力工程学报》 北大核心 2025年第7期1052-1062,共11页
飞轮储能辅助调频是改善火电机组调频性能和运行稳定性的有效方案之一。为提升飞轮储能参与二次调频的综合性能,提出了一种基于变模态分解改进鲸群优化算法的飞轮辅助火电机组二次调频协同控制策略。首先,基于飞轮储能单元机侧和网侧控... 飞轮储能辅助调频是改善火电机组调频性能和运行稳定性的有效方案之一。为提升飞轮储能参与二次调频的综合性能,提出了一种基于变模态分解改进鲸群优化算法的飞轮辅助火电机组二次调频协同控制策略。首先,基于飞轮储能单元机侧和网侧控制机理,建立了适配1 000 MW超超临界火电机组的飞轮储能阵列控制系统模型,以及飞轮储能系统与超超临界机组协同控制的二次调频模型;其次,提出了基于鲸群优化算法的改进变模态分解方法,实现了火电机组和飞轮系统响应自动发电控制(AGC)指令的优化分配;最后,针对分配结果设计了一种提升飞轮系统荷电状态(SOC)充放电裕度的控制策略,发展了综合考虑调频性能和飞轮可靠性的飞轮辅助火电二次调频控制策略。结果表明:所提控制策略在减弱飞轮储能SOC和火电机组主蒸汽压力波动的同时,可使机组的AGC性能考核指标提升16.72%。 展开更多
关键词 火电机组 飞轮储能 二次调频 AGC指令 鲸鱼优化算法 模态分解
在线阅读 下载PDF
基于优化变分模态分解的混凝土浅层空洞病害识别 被引量:2
4
作者 赵维刚 石壮 +3 位作者 杨勇 田秀淑 鞠景会 李一凡 《振动与冲击》 EI CSCD 北大核心 2024年第14期91-102,共12页
针对开放环境下混凝土空洞病害检测的病害特征识别中噪声干扰、成分识别问题进行了研究,提出了基于优化变分模态分解(improved variational mode decomposition,IVMD)与自由振动衰减速度的混凝土浅层病害声振信号识别方法。该研究建立... 针对开放环境下混凝土空洞病害检测的病害特征识别中噪声干扰、成分识别问题进行了研究,提出了基于优化变分模态分解(improved variational mode decomposition,IVMD)与自由振动衰减速度的混凝土浅层病害声振信号识别方法。该研究建立了混凝土浅层空洞病害的理论模型,仿真了不同工况下的病害特征频率及其变化规律;提出了基于IVMD的信号分解方法,设计了基于Tent混沌与柯西变异优化的麻雀搜索算法联合搜索变分模态分解的关键参数k和α,在最佳分解的基础上提出了基于自相关函数图形、相关系数、衰减系数与频域分布情况的浅层空洞病害本征模态函数(intrinsic mode function,IMF)识别方法;选取幅值衰减评估了特征IMF的衰减速度,得出了基于振动衰减特征的空洞病害识别方法;通过预埋病害模型试验对比分析,验证了所提方法的有效性。研究结果表明,基于IVMD的分解方法能够有效降低噪声及其他成分的干扰,提高空洞病害识别精度和准确度。 展开更多
关键词 病害检测 优化麻雀搜索算法 优化模态分解(IVMD) 时域衰减速度 声振法
在线阅读 下载PDF
基于变分模态分解与鲸鱼算法优化回声状态网络的风速预测模型 被引量:1
5
作者 唐非 李昊 《传感技术学报》 CAS CSCD 北大核心 2024年第10期1770-1777,共8页
风速受多种因素影响常伴随着随机性和非平稳性,给风电接入电网造成了相当大的困难,准确的风速预测对风力发电有着极大的研究意义。将变分模态分解算法与鲸鱼算法优化回声状态网络模型相结合,提出了一种风速预测模型。首先通过变分模态... 风速受多种因素影响常伴随着随机性和非平稳性,给风电接入电网造成了相当大的困难,准确的风速预测对风力发电有着极大的研究意义。将变分模态分解算法与鲸鱼算法优化回声状态网络模型相结合,提出了一种风速预测模型。首先通过变分模态分解算法将风速序列分解成多个分量以减少风速内部信号间的耦合性,降低建模难度。然后对这些分量分别建立对应的回声状态网络预测模型。针对回声状态网络模型性能受储备池参数影响较大的问题,采用鲸鱼优化算法对储备池参数进行优化。风速的最终预测值由分解后各分量预测值相加得到。最后,将实际采集的短期风速数据作为研究对象,通过与其他4种预测模型的对比分析表明提出的风速预测模型具有更高的预测精度,能够更好地对风速的变化趋势进行预测。 展开更多
关键词 风速 预测 模态分解 回声状态网络 鲸鱼优化算法
在线阅读 下载PDF
参数优化变分模态分解与LSTM的电力物资需求预测 被引量:6
6
作者 向洪伟 曹馨雨 +5 位作者 张丽娟 周楚婷 张迪 邓晨凤 谢鸿鹏 王楷 《重庆大学学报》 CAS CSCD 北大核心 2024年第4期127-138,共12页
国家电网物资采购管理水平不断提高,线上采购流程逐步完善,但仍存在由于采购计划预估不准导致招投标过程中,供应商利用招投标总标包机制进行价格博弈而造成电网公司采购成本增加,因此,建立准确有效的电力物资需求预测模型具有重要意义... 国家电网物资采购管理水平不断提高,线上采购流程逐步完善,但仍存在由于采购计划预估不准导致招投标过程中,供应商利用招投标总标包机制进行价格博弈而造成电网公司采购成本增加,因此,建立准确有效的电力物资需求预测模型具有重要意义。针对电力物资序列的非稳定性、波动性和间歇性特点,提出一种基于参数优化变分模态分解(variational mode decomposition,VMD)与长短时记忆神经网络(long short-term memory,LSTM)的电力物资需求预测方法,选取国网电商专区平台的典型电力物资,采用鲸鱼优化算法(whale optimization algorithm,WOA)参数优化的VMD对原始序列进行模态分解,将分解获得的各模态分量分别构建LSTM模型,最后将各模态的预测值叠加重构为电力物资的预测值。实验结果表明:所提电力物资需求预测方法较LSTM、EMD-LSTM、VMD-LSTM、PSO-VMD-LSTM、SSA-VMD-LSTM有更高的准确率,对电网物资采购预测具有一定实际意义。 展开更多
关键词 电力物资 长短期记忆神经网络 模态分解 鲸鱼优化算法 时间序列
在线阅读 下载PDF
基于优化变分模态分解和包络峭度的轴承故障诊断 被引量:2
7
作者 刘烽 陈学军 +1 位作者 张磊 杨康 《计量学报》 CSCD 北大核心 2024年第10期1533-1540,共8页
针对变分模态分解(VMD)的分解层数K和惩罚因子α难以选择问题,提出了用减法平均优化器(SABO)对参数寻优的方法。首先,采用SABO对K和α进行寻优,输出最优参数组合并代入到VMD中,将原始振动信号分解得到K个模态分量;然后,用最大包络峭度... 针对变分模态分解(VMD)的分解层数K和惩罚因子α难以选择问题,提出了用减法平均优化器(SABO)对参数寻优的方法。首先,采用SABO对K和α进行寻优,输出最优参数组合并代入到VMD中,将原始振动信号分解得到K个模态分量;然后,用最大包络峭度为指标提取K个模态分量中峭度最大的分量作为最优分量,并计算其相关时域和熵理论特征参数构造特征向量样本集;最后,将特征向量样本集输入到经网格搜索和五折交叉验证调参的支持向量机(SVM)中进行故障诊断。为了验证该方法的有效性,利用凯斯西储大学轴承数据集进行实验,实验结果表明:该方法分类效果更好,准确率达到99.44%;基于江南大学3种不同工况的轴承数据实验,最终故障诊断准确率都达到了95%以上。 展开更多
关键词 力学计量 滚动轴承 故障诊断 模态分解 减法平均优化 包络峭度 优化算法
在线阅读 下载PDF
基于优化变分模态分解的脑电情绪识别 被引量:2
8
作者 王雪蒙 郭滨 马欣 《计算机应用与软件》 北大核心 2024年第2期80-85,177,共7页
为提高脑电情绪识别的准确性与可靠性,提出一种基于优化变分模态分解(VMD)的脑电情绪识别方法。对情绪脑电的节律信号VMD分解,引入磷虾群优化算法(KH)搜索VMD的最优分解层数和惩罚因子;从分解后的固有模态分量(IMFs)中提取平均能量、功... 为提高脑电情绪识别的准确性与可靠性,提出一种基于优化变分模态分解(VMD)的脑电情绪识别方法。对情绪脑电的节律信号VMD分解,引入磷虾群优化算法(KH)搜索VMD的最优分解层数和惩罚因子;从分解后的固有模态分量(IMFs)中提取平均能量、功率谱密度作为特征;利用XGBoost算法进行分类。实验结果表明,与EMD、EEMD等特征提取方法相比,该方法在DEAP数据集上达到了91.02%的分类准确率,可以更有效地提取脑电情感特征,为脑电情绪识别的研究提供了新方法。 展开更多
关键词 脑电情绪识别 模态分解 磷虾群优化算法 固有模态
在线阅读 下载PDF
基于优化变分模态分解与计算阶次分析的主轴承故障特征增强方法 被引量:1
9
作者 栾孝驰 张振鹏 +2 位作者 沙云东 高翔 王李成 《推进技术》 EI CAS CSCD 北大核心 2024年第11期179-191,共13页
针对航空发动机主轴承微弱故障特征在高背景噪声环境和变转速工况下难识别的问题,提出了基于优化变分模态分解与计算阶次分析的主轴承故障特征增强方法。该方法将转速信号进行积分得到角位移信号,通过等角位移重采样将非平稳的振动时域... 针对航空发动机主轴承微弱故障特征在高背景噪声环境和变转速工况下难识别的问题,提出了基于优化变分模态分解与计算阶次分析的主轴承故障特征增强方法。该方法将转速信号进行积分得到角位移信号,通过等角位移重采样将非平稳的振动时域信号转化为振动角域稳态信号。为了更好地分离信号中的高背景噪声,提取微弱故障信息,通过人工蜂鸟算法对变分模态分解(VMD)的惩罚因子和分解层数进行优化,使用优化后的VMD方法分解振动角域稳态信号;以故障特征能量比(FCER)作为指标对变分模态分解后的各信号分量进行评价,选择FCER大于所有分量均值的分量重构,实现振动角域信号降噪;对重构的振动角域信号进行包络谱分析,得到阶次谱并与理论故障特征阶次进行对比,实现故障诊断。通过仿真数据以及开展整机试车条件下获得的航空发动机主轴承外圈压坑故障实验数据对本文所提方法的有效性进行验证。结果表明:与局部均值分解-故障特征能量比(LMD-FCER)、小波包分解-峭度值指标-希尔伯特变换(WPD-KVI-Hilbert)分析方法相比,本文所提方法可以有效增强主轴承外圈故障特征阶次,实现了高转速、高背景噪声和变转速工况下航空发动机主轴承微弱故障的有效诊断。 展开更多
关键词 主轴承 优化模态分解 计算阶次 故障特征增强 高背景噪声 故障诊断
在线阅读 下载PDF
气爆破岩振动信号优化分解与相关特征分析
10
作者 付晓强 戴良玉 +1 位作者 俞缙 邵艺强 《中国安全科学学报》 北大核心 2025年第5期64-72,共9页
为解决变分模态分解过程中模态数和二次惩罚因子难以确定的问题,提出灰狼优化-变分模态分解(GWO-VMD)算法。以龙龙隧道气爆法施工为依托,采用集成化采集模块采集气爆破岩过程中振动信号,利用相空间重构递归图(RP)相似度模型准确判别信号... 为解决变分模态分解过程中模态数和二次惩罚因子难以确定的问题,提出灰狼优化-变分模态分解(GWO-VMD)算法。以龙龙隧道气爆法施工为依托,采用集成化采集模块采集气爆破岩过程中振动信号,利用相空间重构递归图(RP)相似度模型准确判别信号GWO-VMD主分量;重构得到去除干扰项的真实信号,揭示气爆信号能量在时频域的分布特征,并量化数码电子雷管精度误差。结果表明:与传统的变分模态算法相比,GWO-VMD算法在气爆破岩信号信噪比提升和自适应相关特征提取方面具有显著优势,具有很强的时变频率追踪性能,能够准确识别数码雷管起爆精度,有效识别隧道爆破雷管灾害源特征。 展开更多
关键词 气爆破岩 振动信号 优化分解 相关特征 递归图 灰狼优化-模态分解(GWO-VMD)
在线阅读 下载PDF
变分模态分解方法在轴承故障诊断中的应用研究进展 被引量:4
11
作者 陆志杰 王志良 +3 位作者 鄢小安 刘德利 孙见君 马晨波 《润滑与密封》 CAS CSCD 北大核心 2024年第9期178-190,共13页
作为旋转机械的核心和易发生故障的部件,滚动轴承及其故障诊断是目前研究的热点和前沿。有效的特征提取方法对于滚动轴承故障诊断至关重要,其中变分模态分解算法(VMD)因对复杂信号具有较强的分析能力和自适应性,应用潜力较好。对VMD的... 作为旋转机械的核心和易发生故障的部件,滚动轴承及其故障诊断是目前研究的热点和前沿。有效的特征提取方法对于滚动轴承故障诊断至关重要,其中变分模态分解算法(VMD)因对复杂信号具有较强的分析能力和自适应性,应用潜力较好。对VMD的基本原理及其优势、VMD在轴承故障特征提取方面的应用、VMD参数优化方法以及最新进展进行归纳总结,针对VMD参数优化问题,从适应度函数构造和群智能算法改进上,提出一种新的解决方法,并探讨VMD在诊断滚动轴承早期微弱故障和复合故障等方面的不足之处,最后从理论研究和工程应用的角度,展望VMD未来的发展方向,可为从事滚动轴承故障诊断的相关研究人员提供参考。 展开更多
关键词 滚动轴承 故障诊断 特征提取 模态分解算法 参数优化
在线阅读 下载PDF
基于多元模态分解与多目标算法优化的深度集成学习模型的超短期风电功率预测 被引量:3
12
作者 朱梓彬 孟安波 +4 位作者 欧祖宏 王陈恩 张铮 陈黍 梁濡铎 《现代电力》 北大核心 2024年第3期458-469,共12页
针对风电功率预测问题,提出了一种基于多元变分模态分解(multivariate variational mode decomposition,MVMD)、多目标纵横交叉优化(multi-objective crisscross optimization,MOCSO)算法和Blending集成学习的超短期风电功率预测。在数... 针对风电功率预测问题,提出了一种基于多元变分模态分解(multivariate variational mode decomposition,MVMD)、多目标纵横交叉优化(multi-objective crisscross optimization,MOCSO)算法和Blending集成学习的超短期风电功率预测。在数据处理阶段,为了保持各序列间的同步相关性以及分解后得到本征模态函数(intrinsic mode functions,IMF)分量个数和分量频率相匹配,使用MVMD对多通道原始数据进行同步分解。针对单一机器学习模型导致预测的全面性不足,且存在精度和鲁棒性低的问题,提出基于MOCSO算法动态加权的Blending集成学习模型。通过对递归神经网络、卷积神经网络、长短期记忆网络的预测结果进行动态加权集成,并通过MOCSO优化调整权重,以提高模型的预测准确性与稳定性。实验结果表明,所提预测模型不仅有效,且显著优于其他预测模型。 展开更多
关键词 风电功率预测 多元模态分解 多目标纵横交叉优化 Blending集成学习
在线阅读 下载PDF
基于信息熵优化变分模态分解的滚动轴承故障特征提取 被引量:60
13
作者 李华 伍星 +1 位作者 刘韬 陈庆 《振动与冲击》 EI CSCD 北大核心 2018年第23期219-225,共7页
针对变分模态分解(Variational Mode Decomposition,VMD)的参数需事先人为确定的问题以及如何选取包含故障特征信息的本征模态分量(Intrinsic Mode Function,IMF)的问题,提出了基于信息熵的参数确定方法和基于信息熵的IMF选取方法。该... 针对变分模态分解(Variational Mode Decomposition,VMD)的参数需事先人为确定的问题以及如何选取包含故障特征信息的本征模态分量(Intrinsic Mode Function,IMF)的问题,提出了基于信息熵的参数确定方法和基于信息熵的IMF选取方法。该方法首先对原始故障信号进行变分模态分解,通过信息熵最小值原则对其参数进行优化,获得既定的若干IMF分量;在优化参数时获得信息熵最小值所在的IMF,选取其为有效IMF分量进行包络解调分析,提取轴承故障特征频率。通过轴承仿真信号和实际数据分析,表明该方法能够提取滚动轴承早期故障信号的微弱特征,并实现故障的准确判别。 展开更多
关键词 模态分解 信息熵 参数优化 滚动轴承 包络解调 故障诊断
在线阅读 下载PDF
一种自适应选取参数的改进变分模态分解方法
14
作者 李志强 李德文 +2 位作者 左洪福 蔡景 张营 《机电工程》 CAS 北大核心 2024年第6期980-991,共12页
针对传统的变分模态分解(VMD)方法中模态数和惩罚参数难以确定的问题,提出了一种自适应选取参数的改进变分模态分解方法。首先,综合考虑了故障的冲击性和周期性特点,以Gini指数和谱峰比指标为基础构建了加权谱峰比(WSPR)指标;然后,采用... 针对传统的变分模态分解(VMD)方法中模态数和惩罚参数难以确定的问题,提出了一种自适应选取参数的改进变分模态分解方法。首先,综合考虑了故障的冲击性和周期性特点,以Gini指数和谱峰比指标为基础构建了加权谱峰比(WSPR)指标;然后,采用非洲秃鹫优化算法(AVOA)进行了寻优,得到了最佳的模态数和惩罚参数组合,克服了人为主观选择参数的弊端;最后,在VMD分解信号后,利用加权谱峰比最大原则自适应选取了敏感内涵模态分量,对最佳IMF进行了包络解调分析,提取了滚动轴承早期故障特征,利用仿真信号、单一故障滚动轴承试验信号及复合故障滚动轴承试验信号对所述方法进行了验证。实验结果表明:该方法可以准确地提取出仿真信号的故障频率(100 Hz)、单一故障信号的故障频率(236.4 Hz)和复合故障信号的故障频率(内圈故障频率149.14 Hz、外圈故障频率86.39 Hz),并且在与其他方法和指标的对比中,其最佳IMF的包络谱图中故障特征频率及其倍数频的谱峰更加明显,准确率更高且鲁棒性更强。研究结果表明:该方法能够有效提取轴承早期故障信号的微弱特征,实现故障类型准确识别的目的。 展开更多
关键词 滚动轴承 早期故障诊断 模态分解 模态 惩罚参数 非洲秃鹫优化算法 加权谱峰比指标
在线阅读 下载PDF
基于变分模态优化法的丝杠副振动信号分析
15
作者 朱燕芳 梁医 +2 位作者 刘佳运 沈永斌 冯虎田 《组合机床与自动化加工技术》 北大核心 2024年第12期139-144,共6页
滚珠丝杠是数控机床中常见的精密传动部件,在工作过程中的碰撞冲击会影响其使用寿命。首先,通过振动信号监测丝杠副的工作状态,有助于评价丝杠副的运行质量。根据碰撞与动力学分析得到滚珠的特征球通频率公式;其次,提出了基于遗传和粒... 滚珠丝杠是数控机床中常见的精密传动部件,在工作过程中的碰撞冲击会影响其使用寿命。首先,通过振动信号监测丝杠副的工作状态,有助于评价丝杠副的运行质量。根据碰撞与动力学分析得到滚珠的特征球通频率公式;其次,提出了基于遗传和粒子群混合优化的变分模态分解方法,通过优化变分模态分解方法中的参数惩罚因子和模态数以寻求最优解;最后,通过支持向量机方法对滚珠丝杠副正常与故障的振动信号进行分类预测。结果显示,基于遗传粒子群共同优化的变分模态分解方法在对振动信号球通频率的提取中,分解得到的信号分量更清,具有较大优势。 展开更多
关键词 滚珠丝杠副 模态分解 优化设计 特征向量
在线阅读 下载PDF
基于变分模态分解云模型和优化LSSVM的汽轮机振动故障诊断 被引量:15
16
作者 田松峰 魏言 +3 位作者 郁建雄 王傲男 王子光 薛正昂 《动力工程学报》 CAS CSCD 北大核心 2019年第10期818-825,共8页
针对汽轮机运行过程中的非平稳性和多分量性振动故障信号,提出一种基于变分模态分解相对熵云模型和优化最小二乘支持向量机(LSSVM)的汽轮机振动故障诊断方法。首先,利用变分模态分解按照预设尺度将故障信号分解为K个模态分量,根据各模... 针对汽轮机运行过程中的非平稳性和多分量性振动故障信号,提出一种基于变分模态分解相对熵云模型和优化最小二乘支持向量机(LSSVM)的汽轮机振动故障诊断方法。首先,利用变分模态分解按照预设尺度将故障信号分解为K个模态分量,根据各模态分量与原始信号的相对熵大小去除伪分量,提取最佳分量并将其输入云模型,采用逆向云发生器提取特征向量。然后使用改进果蝇优化算法动态调整搜索步长搜寻影响LSSVM识别精度的超参数最佳组合,最后将特征向量输入参数优化后的LSSVM进行故障识别,并与采用经验模态分解相对熵云模型和集合经验模态分解相对熵云模型的LSSVM识别结果进行了对比。结果表明:所提方法优于传统的信号分解方法,对汽轮机振动故障类别具有很高的识别准确率。 展开更多
关键词 振动故障 模态分解 相对熵 云模型 改进果蝇优化算法 LSSVM
在线阅读 下载PDF
基于参数优化变分模态分解的滚动轴承微弱故障诊断研究 被引量:11
17
作者 瞿红春 许旺山 +1 位作者 郭龙飞 林文斌 《机床与液压》 北大核心 2020年第9期162-167,180,共7页
为了提高变分模态分解(VMD)对滚动轴承微弱故障特征提取的准确性,提出了一种基于参数优化VMD与奇异值分量及其熵相结合的滚动轴承故障诊断方法。该方法通过寻优算法确定VMD的模态数K和二次惩罚因子α;根据余弦-标准差指标提取VMD典型本... 为了提高变分模态分解(VMD)对滚动轴承微弱故障特征提取的准确性,提出了一种基于参数优化VMD与奇异值分量及其熵相结合的滚动轴承故障诊断方法。该方法通过寻优算法确定VMD的模态数K和二次惩罚因子α;根据余弦-标准差指标提取VMD典型本征模态分量(IMF);计算IMF奇异值及其熵,并利用计算结果分别判断滚动轴承的不同故障状态。结合美国西储大学轴承振动信号数据,实验结果表明:相比经验模态分解奇异值故障诊断方法,基于参数优化VMD奇异值故障诊断方法能更明显地识别滚动轴承的不同故障类型,为区分滚动轴承微弱故障提供了一种可行的诊断思路。 展开更多
关键词 模态分解 参数优化 奇异值 滚动轴承 故障诊断
在线阅读 下载PDF
基于自适应变分模态分解的组合模型风电功率预测
18
作者 鹿凯 石开明 +3 位作者 贾欢 金勇杰 王旭 徐谱鑫 《电源学报》 CSCD 北大核心 2024年第2期283-289,共7页
风电机组出力的高波动与随机性,影响电力系统安全稳定运行与风电预测精度,针对此提出结合风电功率波动特性研究的风电功率预测方法。首先从时间与机组规模尺度分析风电功率波动特性,并指导选取合适的风电数据用于风电功率预测;然后建立... 风电机组出力的高波动与随机性,影响电力系统安全稳定运行与风电预测精度,针对此提出结合风电功率波动特性研究的风电功率预测方法。首先从时间与机组规模尺度分析风电功率波动特性,并指导选取合适的风电数据用于风电功率预测;然后建立基于最小二乘支持向量机的风电机组短期功率预测模型,采用自适应变分模态分解实现风电数据分频,并采用改进粒子群优化最小二乘支持向量机模型中影响回归预测的模型参数。实验结果表明,预测模型自适应性较强,通过预测误差评价指标,可证明预测方法的有效性。 展开更多
关键词 最小二乘支持向量机 风电功率预测 自适应模态分解 改进粒子群优化 频预测
在线阅读 下载PDF
一种基于逐次变分模态分解和改进深度极限学习机的滚动轴承故障分类方法 被引量:1
19
作者 丁国荣 《农业装备与车辆工程》 2024年第10期129-134,共6页
为应对滚动轴承故障诊断中特征提取较难和故障类型识别准确率偏低等问题,提出一种基于逐次变分模态分解(SVMD)与分形维数(FD)结合算术优化算法(AOA)优化深度极限学习机(DELM)的轴承故障诊断方法。通过SVMD对轴承原始振动信号进行多尺度... 为应对滚动轴承故障诊断中特征提取较难和故障类型识别准确率偏低等问题,提出一种基于逐次变分模态分解(SVMD)与分形维数(FD)结合算术优化算法(AOA)优化深度极限学习机(DELM)的轴承故障诊断方法。通过SVMD对轴承原始振动信号进行多尺度分解,得到一系列固有模态分量(IMFs);计算不同状态下各个IMF分量的FD,归一化后作为故障特征向量;利用AOA-DELM模型实现轴承的故障诊断。采用美国凯斯西储大学(CWRU)轴承数据集作为实验数据进行实验验证,结果表明,所提方法在滚动轴承故障诊断中具有优越性,识别准确率可达98.80%。 展开更多
关键词 轴承故障 逐次模态分解 深度极限学习机 算术优化算法
在线阅读 下载PDF
侵彻过载信号自适应变分模态分解时频分析方法
20
作者 谢雨岑 郜王鑫 +2 位作者 邵志豪 房安琪 张珂 《探测与控制学报》 CSCD 北大核心 2024年第4期69-78,共10页
传统过载信号时频分析方法广泛应用于超高速侵彻引信层间粘连机理研究和信号处理方法优化中,但模态混叠效应已成为其应用时的瓶颈。针对该问题,提出一种基于自适应优化变分模态分解(OVMD)的侵彻过载信号时频分析方法。考虑到侵彻过载信... 传统过载信号时频分析方法广泛应用于超高速侵彻引信层间粘连机理研究和信号处理方法优化中,但模态混叠效应已成为其应用时的瓶颈。针对该问题,提出一种基于自适应优化变分模态分解(OVMD)的侵彻过载信号时频分析方法。考虑到侵彻过载信号频率成分复杂且具有的非平稳性、随机性特点,该方法以模态的混叠效应和稀疏性作为信号的分解约束,采用非支配排序遗传算法(NSGA-II)搜索获取变分模态分解算法的分解个数和二次惩罚因子,再基于参数优化的变分模型,确定各模态函数的中心频率和带宽,完成过载信号各频率成分的自适应分解。通过对实测侵彻过载信号分析可见,相比于通用经验模态分解算法,该方法可以有效抑制模态混叠现象,且在时域和频域上均具有更好的分辨率,能为引信系统的信号处理、仿真模型验证、结构设计提供有效信息支撑。 展开更多
关键词 侵彻过载信号 时频 模态混叠 自适应优化模态分解
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部