期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于LSTM-POD的汽车湍流尾迹的高时间分辨速度场重构
1
作者 杨志刚 李俣静 +2 位作者 夏超 王梦佳 余磊 《汽车工程》 EI CSCD 北大核心 2024年第7期1302-1313,共12页
本文针对方背Ahmed汽车标模的湍流尾迹,建立基于长短时记忆法(long short-term memory,LSTM)和本征正交分解(proper orthogonal decomposition, POD)相结合的深度学习模型LSTM-POD。通过建立非时间分辨平面速度场POD模态系数和若干离散... 本文针对方背Ahmed汽车标模的湍流尾迹,建立基于长短时记忆法(long short-term memory,LSTM)和本征正交分解(proper orthogonal decomposition, POD)相结合的深度学习模型LSTM-POD。通过建立非时间分辨平面速度场POD模态系数和若干离散点的时间分辨速度信号的映射关系,实现了方背Ahmed汽车标模湍流尾迹流场的高时间分辨率重构,并对比了不同时间步长配置,即单时间步长(LSTM-Sin)和多时间步长(LSTM-Mul)对重构效果的影响。研究表明:LSTM-POD模型在时间序列重构中具有较强的学习和泛化能力。另外,LSTM-Mul考虑到了时间上的连续性和相关性,相较于LSTM-Sin,其重构出的低阶模态系数和速度场与POD的重构结果更吻合。本研究提出的深度学习模型可以缓解通过实验及高精度数值模拟获取高时间分辨率流场数据资源消耗大、计算效率低等问题。 展开更多
关键词 汽车湍流尾迹 深度学习 流场重构 本征正交分解 长短时记忆法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部