期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
基于自适应图卷积和注意力池化的点云分类与分割
1
作者 刘玉珍 张冬霞 陶志勇 《计算机工程与科学》 CSCD 北大核心 2024年第5期872-880,共9页
针对现有点云分类与分割方法使用最大池化聚合局部邻域特征,导致最大值以外的重要信息丢失的缺陷,提出一种结合自适应图卷积AdaptConv和注意力池化AP的点云分类与分割网络。首先,采用K近邻算法构建点云局部图结构,根据点的特征生成自适... 针对现有点云分类与分割方法使用最大池化聚合局部邻域特征,导致最大值以外的重要信息丢失的缺陷,提出一种结合自适应图卷积AdaptConv和注意力池化AP的点云分类与分割网络。首先,采用K近邻算法构建点云局部图结构,根据点的特征生成自适应卷积核,灵活精确地捕获点云的局部邻域特征;其次,为有效提高特征聚合能力,采用注意力池化定义能量函数得到权重值,加权并聚合出更具代表性的点云局部特征;最后,堆叠自适应图卷积和注意力池化逐层提取全局特征,提高网络的分类和分割精度。实验结果表明,相较基准方法,点云分类的平均类别精度提升0.9%,部件分割和语义分割的平均交并比分别提升0.8%和0.3%,证明所提方法可有效提升点云分类与分割的准确率,具有较高的鲁棒性。 展开更多
关键词 自适应图卷积 注意力池化 能量函数 最大池化
在线阅读 下载PDF
多尺度语义感知和注意力融合的多模态方面级情感分析模型 被引量:1
2
作者 杨丽莎 马常霞 +4 位作者 仲兆满 周子豪 周志耀 胡文彬 赵雪峰 《南京大学学报(自然科学版)》 北大核心 2025年第2期223-236,共14页
多模态方面级情感分析模型在特征提取过程中可能过度依赖文本模态,而忽视文本与图像内容潜在的语义关联.由于模态之间的异质编码属性和信息质量差异,无法执行有效的跨模态交互.为了解决这一问题,提出一种多尺度语义感知和注意力融合模型... 多模态方面级情感分析模型在特征提取过程中可能过度依赖文本模态,而忽视文本与图像内容潜在的语义关联.由于模态之间的异质编码属性和信息质量差异,无法执行有效的跨模态交互.为了解决这一问题,提出一种多尺度语义感知和注意力融合模型(Multiscale Semantic Perception and Attention Fusion Model,MSPAF).首先,充分挖掘多尺度的图像语义信息,进行跨模态语义关联建模,以促进文本图像在统一特征空间内的有效交互.提出一种动态门控交叉注意力机制,在方面引导下进行视觉特征提取.其次,结合图卷积神经网络深度共现词间的语义依赖关系,获取句法和语义增强的上下文表征.最后,在多模态特征融合阶段,通过多层注意力池化学习不同模态特征的相关性,并降低融合特征维度.在公开的情感分析数据集上,对提出的模型进行评估,实验结果表明,与一系列基线模型相比,本模型具有更佳的情感分类效果. 展开更多
关键词 多模态方面级情感分析 多尺度图像语义提取 统一特征空间 语义关联建模 文本图卷积 注意力池化
在线阅读 下载PDF
基于归纳学习图卷积和自注意力池化的图分类网络
3
作者 倪瑞智 王永平 +2 位作者 张晓琳 叶金辉 陶雪晴 《计算机应用与软件》 北大核心 2024年第10期177-183,共7页
针对图神经网络在大规模图上的分类表现不佳,无法快速形成未知节点和边的嵌入,并且容易丢失图重要特征等问题。提出一种基于归纳学习和自注意力池化相结合的图分类网络模型,一方面采用改进聚合函数后的归纳式学习方法对图的节点特征形... 针对图神经网络在大规模图上的分类表现不佳,无法快速形成未知节点和边的嵌入,并且容易丢失图重要特征等问题。提出一种基于归纳学习和自注意力池化相结合的图分类网络模型,一方面采用改进聚合函数后的归纳式学习方法对图的节点特征形成快速地嵌入,另一方面采用自注意力池化方法保留图的重要特征,最终采用适于提取大规模图信息的层次化结构框架进行下游图分类任务。实验结果表明,该网络模型在相同的公共数据集下,对比其他图分类模型有2%~10%左右精度的提高。 展开更多
关键词 图神经网络 图分类 注意力池化 图卷积神经网络
在线阅读 下载PDF
基于通道和帧级特征注意力模型的环境声音识别 被引量:8
4
作者 苏瑞轩 葛动元 姚锡凡 《科学技术与工程》 北大核心 2024年第16期6792-6798,共7页
为了对环境声音进行更好的识别,提出基于通道和帧级特征注意力的环境声音识别卷积神经网络模型。该模型针对声音特征特点选取一维卷积以提高模型对声音特征信息的提取能力,并引入SE-Res2Net模块实现对声音特征细粒度上的全局感受并帮助... 为了对环境声音进行更好的识别,提出基于通道和帧级特征注意力的环境声音识别卷积神经网络模型。该模型针对声音特征特点选取一维卷积以提高模型对声音特征信息的提取能力,并引入SE-Res2Net模块实现对声音特征细粒度上的全局感受并帮助模型关注特征通道间的信息,在全连接层前加入注意力统计池化模块,增强模型对表征不同声音类别的关键帧级特征的学习以提高模型识别性能。采用Urbansound8K数据集,实验结果表明:所提模型在测试集上的训练准确率达到94.5%,即模型可以有效学习声音特征中表征不同环境声音的关键信息并进行正确预测。对消融实验结果分析可得,所提模型的设计可使其分类错误率的下降率达到43.8%,表明模型对一维卷积的应用和各个模块的引入是有效的,可见所提环境声音识别模型性能优越。 展开更多
关键词 声音识别 细粒度 通道加权 帧级特征 注意力统计池化
在线阅读 下载PDF
面向文本分类的多头注意力池化RCNN模型 被引量:6
5
作者 翟一鸣 王斌君 +1 位作者 周枝凝 仝鑫 《计算机工程与应用》 CSCD 北大核心 2021年第12期155-160,共6页
针对经典循环卷积神经网络(RCNN)在池化层采用的最大池化策略较为单一,会忽略除最突出特征外的其他特征,影响分类精度的问题,提出基于多头注意力池化的循环卷积神经网络(MHAP-RCNN)模型。多头注意力池化可以充分考虑各特征对分类的贡献... 针对经典循环卷积神经网络(RCNN)在池化层采用的最大池化策略较为单一,会忽略除最突出特征外的其他特征,影响分类精度的问题,提出基于多头注意力池化的循环卷积神经网络(MHAP-RCNN)模型。多头注意力池化可以充分考虑各特征对分类的贡献,且能在训练过程中动态优化,有效缓解最大池化的单一性问题。在三个公开的文本分类数据集上进行实验,结果表明与经典RCNN及其他各模型相比,提出的模型具有更好的文本分类性能。 展开更多
关键词 文本分类 循环卷积神经网络 池化 最大池化 多头注意力池化
在线阅读 下载PDF
基于图卷积网络与自注意力图池化的视频行人重识别方法 被引量:2
6
作者 姚英茂 姜晓燕 《计算机应用》 CSCD 北大核心 2023年第3期728-735,共8页
针对跨相机网络视频中存在的遮挡、空间不对齐、背景杂波等因素导致视频行人重识别效果较差的问题,提出一种基于图卷积网络(GCN)与自注意力图池化(SAGP)的视频行人重识别方法。首先,通过区块关系图建模挖掘视频中帧间不同区域的关联信息... 针对跨相机网络视频中存在的遮挡、空间不对齐、背景杂波等因素导致视频行人重识别效果较差的问题,提出一种基于图卷积网络(GCN)与自注意力图池化(SAGP)的视频行人重识别方法。首先,通过区块关系图建模挖掘视频中帧间不同区域的关联信息,并利用GCN优化逐帧图像中的区域特征,缓解遮挡和不对齐等问题;然后,通过SAGP机制去除对行人特征贡献较低的区域,避免背景杂波区域的干扰;最后,提出一种加权损失函数策略,使用中心损失优化分类学习结果,并使用在线软挖掘和类感知注意力(OCL)损失解决难样本挖掘过程中可用样本未被充分利用的问题。实验结果表明,在MARS数据集上,相较于次优的AITL方法,所提方法的平均精度均值(mAP)与Rank-1分别提高1.3和2.0个百点。所提方法能够较好地利用视频中的时空信息,提取更具判别力的行人特征,提高行人重识别任务的效果。 展开更多
关键词 视频行人重识别 图卷积网络 注意力池化 加权损失函数策略 中心损失
在线阅读 下载PDF
语义及句法特征多注意力交互的医疗自动问答 被引量:2
7
作者 张华丽 康晓东 +2 位作者 李小军 刘汉卿 王笑天 《计算机工程与应用》 CSCD 北大核心 2022年第18期233-240,共8页
针对中文医疗自动问答任务,为了捕捉问答句中重要的句法信息和语义信息,提出引入图卷积神经网络捕捉句法信息,并添加多注意力池化模块实现问答句的语序特征和句法特征联合学习的方法。在BERT模型学习问答句的高阶语义特征基础上,利用双... 针对中文医疗自动问答任务,为了捕捉问答句中重要的句法信息和语义信息,提出引入图卷积神经网络捕捉句法信息,并添加多注意力池化模块实现问答句的语序特征和句法特征联合学习的方法。在BERT模型学习问答句的高阶语义特征基础上,利用双向门控循环单元描述句子的全局语义特征,以及引入图卷积神经网络编码句子的语法结构信息,以与双向门控循环单元所获取的序列特征呈现互补关系;通过多注意力池化模块对问答对的不同语义空间上的编码向量进行两两交互,并着重突出问答对的共现特征;通过衡量问答对的匹配分数,找出最佳答案。实验结果表明,在cMedQA v1.0和cMedQA v2.0数据集上,相比于主流的深度学习方法,所提方法的ACC@1有所提高。实验证明引入图卷积神经网络和多注意力池化模块的集成算法能有效提升自动问答模型的性能。 展开更多
关键词 自动问答 双向门循环单元 图卷积神经网络 句法信息 注意力池化
在线阅读 下载PDF
基于改进ShuffleNet V2的水稻磷素营养诊断方法
8
作者 黄淑梅 杨红云 +1 位作者 孔杰 吴正 《中国稻米》 北大核心 2025年第2期20-28,34,共10页
为了更精确地诊断水稻的磷素营养状况,进而促进水稻的健康生长,我们提出了一种基于改进ShuffleNet V2的水稻磷素营养诊断方法。该方法的核心是在ShuffleNet V2网络模型引入ECA(Efficient Channel Attention)注意力机制,以优化原有模型... 为了更精确地诊断水稻的磷素营养状况,进而促进水稻的健康生长,我们提出了一种基于改进ShuffleNet V2的水稻磷素营养诊断方法。该方法的核心是在ShuffleNet V2网络模型引入ECA(Efficient Channel Attention)注意力机制,以优化原有模型。同时,选用注意力池化(Attention Pooling)技术来进一步提升模型训练的效果。在模型训练过程中,采用了迁移学习策略,即将在大规模数据集ImageNet上预训练的权值迁移至经过改进的ShuffleNet V2网络模型中,并利用这些权值对水稻叶片数据集进行训练,从而构建出水稻磷素营养诊断模型。结果显示,相比其他对比的网络结构模型,改进后的ShuffleNet V2网络模型在水稻分蘖期和拔节期的准确率、精确率、召回率以及F1值均表现出更高的水平,且该模型训练参数少、训练过程更稳定、收敛速度更快,证明改进后的ShuffleNet V2水稻磷素营养诊断模型具备了出色的诊断识别能力,能够为大数据背景下的科学、有效施肥策略提供有力支持。改进的ShuffleNet V2网络模型在Plant Village公共数据集上也取得显著效果,验证了其有效性和良好的泛化能力。 展开更多
关键词 水稻 磷素营养诊断 ECA注意力机制 注意力池化 迁移学习
在线阅读 下载PDF
基于语义特征提取的隐式情感分析方法
9
作者 丛眸 彭涛 朱蓓蓓 《吉林大学学报(理学版)》 北大核心 2025年第1期107-113,共7页
针对目前隐式情感语句中情感词不明显或较少、表达方式委婉等问题,提出一种基于语义特征提取的隐式情感分析方法.该方法通过引入与隐式情感语句相关的事实信息作为辅助特征,并利用RoBERTa预训练模型对文本及其辅助特征进行深度语义交互... 针对目前隐式情感语句中情感词不明显或较少、表达方式委婉等问题,提出一种基于语义特征提取的隐式情感分析方法.该方法通过引入与隐式情感语句相关的事实信息作为辅助特征,并利用RoBERTa预训练模型对文本及其辅助特征进行深度语义交互,以获取全局特征;同时,采用双向门控循环单元(BiGRU)捕捉局部特征,最后结合注意力池化技术计算情感权重,从而更准确地识别和理解隐含的情感信息.在数据集Snopes和PolitiFact上进行仿真实验,实验结果表明,该方法在隐式情感分析方面性能优异,不仅在多个评价指标上超越了现有方法,且整体性能得到显著提升,为更广泛的情感分析应用场景提供了有效的解决方案,特别是在处理复杂和间接表达的情感内容时,具有重要的应用价值和意义. 展开更多
关键词 语义特征 隐式情感分析 双向门控循环单元 注意力池化
在线阅读 下载PDF
基于ASP-SERes2Net的说话人识别算法
10
作者 令晓明 陈鸿雁 +1 位作者 张小玉 张真 《北京工业大学学报》 CAS 北大核心 2025年第1期42-50,共9页
为提升说话人识别的特征提取能力,解决在噪声环境下识别率低的问题,提出一种基于残差网络的说话人识别算法——ASP-SERes2Net。首先,采用梅尔语谱图作为神经网络的输入;其次,改进Res2Net网络的残差块,并且在每个残差块后引入压缩激活(sq... 为提升说话人识别的特征提取能力,解决在噪声环境下识别率低的问题,提出一种基于残差网络的说话人识别算法——ASP-SERes2Net。首先,采用梅尔语谱图作为神经网络的输入;其次,改进Res2Net网络的残差块,并且在每个残差块后引入压缩激活(squeeze-and-excitation,SE)注意力模块;然后,用注意力统计池化(attention statistics pooling,ASP)代替原来的平均池化;最后,采用附加角裕度的Softmax(additive angular margin Softmax,AAM-Softmax)对说话人身份进行分类。通过实验,将ASP-SERes2Net算法与时延神经网络(time delay neural network,TDNN)、ResNet34和Res2Net进行对比,ASP-SERes2Net算法的最小检测代价函数(minimum detection cost function,MinDCF)值为0.0401,等误率(equal error rate,EER)为0.52%,明显优于其他3个模型。结果表明,ASP-SERes2Net算法性能更优,适合应用于噪声环境下的说话人识别。 展开更多
关键词 说话人识别 梅尔语谱图 Res2Net 压缩激活(squeeze-and-excitation SE)注意力模块 注意力统计池化(attention statistics pooling ASP) 附加角裕度的Softmax(additive angular margin Softmax AAM-Softmax)
在线阅读 下载PDF
并行双路径主干下全局特征融合的目标检测算法
11
作者 邱云飞 辛浩 《计算机科学与探索》 CSCD 北大核心 2024年第12期3247-3259,共13页
常规单路径架构主干经过积极的下采样,往往导致特征信息的丢失。同时,仅依靠特征金字塔简单地相加或拼接不利于浅层到深层的特征集成。针对上述问题,提出一种并行双路径主干下全局特征融合的目标检测算法。采用双路径架构主干并行地提... 常规单路径架构主干经过积极的下采样,往往导致特征信息的丢失。同时,仅依靠特征金字塔简单地相加或拼接不利于浅层到深层的特征集成。针对上述问题,提出一种并行双路径主干下全局特征融合的目标检测算法。采用双路径架构主干并行地提取空间与语义信息,并通过双路径融合模块,促进特征信息间的相互补充。顶部特征依次与金字塔池化多尺度池映射相加,利用注意力机制将多尺度池化特征聚集其中,进一步提高多尺度的检测性能。聚集全局尺度信息,利用自注意机制将其融入不同层特征,并重复多次以构建全局特征融合的颈部网络结构,有效提升颈部网络融合全局上下文信息的能力。头部采用Ghost Conv并结合通道混洗操作,维持模型性能的同时减少参数冗余。在KITTI、BDD100K和PASCAL VOC数据集上展开实验,所提算法的平均精度值相较于基线模型(YOLOv7-tiny)分别提高了3.5、3.4和2.7个百分点。实验结果表明,提出的算法提升了复杂场景下的检测性能,而且对算力等资源的要求较低。 展开更多
关键词 目标检测 双路径主干 池化注意力 全局特征融合颈部网络 Ghost检测头
在线阅读 下载PDF
局部加全局视角遮挡人脸表情识别方法 被引量:3
12
作者 南亚会 华庆一 《计算机工程与应用》 CSCD 北大核心 2024年第13期180-189,共10页
实际场景中各种遮挡增加了表情识别难度。为此,提出一种滑块局部加权卷积注意力和全局注意力池化的视觉Transformer结合的方法来解决遮挡问题。利用主干网络提取表情特征图,将表情特征图裁剪成多个区域块,利用局部Patch注意力单元通过... 实际场景中各种遮挡增加了表情识别难度。为此,提出一种滑块局部加权卷积注意力和全局注意力池化的视觉Transformer结合的方法来解决遮挡问题。利用主干网络提取表情特征图,将表情特征图裁剪成多个区域块,利用局部Patch注意力单元通过自适应计算局部特征的注意力权重来感知被遮挡的区域,提取表情局部特征。同时,表情特征图转换成Patch块,通过Patch级和Token级注意力池化的视觉Transformer,从全局角度捕获Patch块之间的相互作用和相关性。引导模型强调最具区别性的特征,而忽略遮挡减少不相关特征的影响。在三个表情数据集及其遮挡子集和一个遮挡数据集上进行实验,结果表明所提模型在遮挡表情识别上优于现有方法。 展开更多
关键词 遮挡人脸表情识别 滑块局部卷积注意力 Patch注意力池化 Token注意力池化 vision Transformer
在线阅读 下载PDF
基于局部和全局特征提取及多级特征聚合的中文方言识别模型
13
作者 孟一凡 陈宁 李泓锴 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期898-904,共7页
与其他语种的方言相比,中文方言种类较多,且方言类间差异小,类内差异大,因此中文方言识别极具挑战性。考虑到中文方言间的差异性可能体现在语音的局部(短时)特性上,也可能体现在语音的全局(长时)特性上,同时还可能反映在语音不同层级的... 与其他语种的方言相比,中文方言种类较多,且方言类间差异小,类内差异大,因此中文方言识别极具挑战性。考虑到中文方言间的差异性可能体现在语音的局部(短时)特性上,也可能体现在语音的全局(长时)特性上,同时还可能反映在语音不同层级的特性上,本文提出一种融合语音局部和全局特征提取以及多级特征聚合的中文方言识别模型。首先通过Res2Block提取语音的局部特征,然后利用Conformer提取语音的全局特征,最后通过将多个Conformer级联输出进行多层级特征的聚合。跨域和非跨域的实验结果表明,该模型取得了比基线模型更高的识别准确率。 展开更多
关键词 CONFORMER 方言识别 多层级特征聚合 Res2Block 注意力统计池化
在线阅读 下载PDF
基于聚类中心的浅层特征融合伪造语音检测
14
作者 吴敦志 陈为真 《计算机工程与设计》 北大核心 2024年第10期2922-2928,共7页
针对现有检测系统在使用wav2vec2.0模型提取特征导致高计算资源消耗和传统打分方法限制泛化性能的问题,提出一种基于聚类中心的浅层特征融合伪造语音检测算法。裁剪wav2vec2.0模型的深层,将浅层特征通过注意力池化以缩短时序长度,用线... 针对现有检测系统在使用wav2vec2.0模型提取特征导致高计算资源消耗和传统打分方法限制泛化性能的问题,提出一种基于聚类中心的浅层特征融合伪造语音检测算法。裁剪wav2vec2.0模型的深层,将浅层特征通过注意力池化以缩短时序长度,用线性层确定融合权重;通过K-means++得到聚类中心,利用当前样本和相应类中心的表示余弦相似度进行训练和打分以判别真伪。实验采用ASVspoof2019和ASVspoof2021挑战赛的逻辑轨道数据集,wav2vec2.0模型参数量减少了60%,等错误率分别达到0.34%和3.67%,在模型精简和泛化性能方面明显优于同类wav2vec2.0模型和传统打分方法。 展开更多
关键词 伪造语音检测 模型压缩 预训练模型 注意力池化 特征融合 聚类中心 余弦相似度
在线阅读 下载PDF
基于遥感图像的农作物干旱检测方法
15
作者 张江南 李吉龙 +3 位作者 王永杰 吕文羽 于瑷源 李文博 《青岛农业大学学报(自然科学版)》 2024年第4期295-300,共6页
针对目前基于遥感图像的农作物干旱检测方法准确率较低的问题,提出了一种基于编码-解码神经网络的图像检测方法。该方法以深度残差神经网络为特征提取主干网络,结合多尺度注意力池化和多尺度空洞卷积技术,通过有效融合高层和低层特征信... 针对目前基于遥感图像的农作物干旱检测方法准确率较低的问题,提出了一种基于编码-解码神经网络的图像检测方法。该方法以深度残差神经网络为特征提取主干网络,结合多尺度注意力池化和多尺度空洞卷积技术,通过有效融合高层和低层特征信息,减少信息损失,增强特征提取效果和农作物干旱边界的识别效果。使用该方法进行基于遥感图像的干旱检测,像素精度为91.05%,平均像素精度为76.19%,结果明显优于其他现有模型。 展开更多
关键词 遥感图像 编码-解码神经网络 农作物 干旱检测 多尺度注意力池化
在线阅读 下载PDF
一种面向生文本的事件同指消解神经网络方法
16
作者 方杰 李培峰 朱巧明 《中文信息学报》 CSCD 北大核心 2019年第9期31-38,共8页
事件同指消解在自然语言理解中是一项复杂的任务,它需要在理解文本信息的基础上,发现其中的同指事件。事件同指消解在信息抽取、问答系统、阅读理解等自然语言任务中均有重要作用。该文提出了一个事件同指消解框架,包括事件抽取(ENS_NN... 事件同指消解在自然语言理解中是一项复杂的任务,它需要在理解文本信息的基础上,发现其中的同指事件。事件同指消解在信息抽取、问答系统、阅读理解等自然语言任务中均有重要作用。该文提出了一个事件同指消解框架,包括事件抽取(ENS_NN)、真实性识别(ENS_NN)和事件同指消解(AGCNN)三个部分。事件同指消解模型(AGCNN)利用注意力池化机制来捕获事件的全局特征,利用门控卷积抽取复杂语义特征,提高了事件同指消解的性能。在KBP 2015和KBP 2016数据集上的实验结果表明,该文提出的方法优于目前最优的系统。 展开更多
关键词 事件抽取 事件同指消解 注意力池化 门控卷积
在线阅读 下载PDF
基于多特征融合的点云场景语义分割 被引量:1
17
作者 郝雯 汪洋 魏海南 《计算机应用》 CSCD 北大核心 2023年第10期3202-3208,共7页
为挖掘特征间的语义关系以及空间分布信息,并通过多特征增强进一步改善点云语义分割的效果,提出一种基于多特征融合的点云场景语义分割网络(MFF-Net)。所提网络以点的三维坐标和改进后的边特征作为输入,首先,利用K-近邻(KNN)算法搜寻点... 为挖掘特征间的语义关系以及空间分布信息,并通过多特征增强进一步改善点云语义分割的效果,提出一种基于多特征融合的点云场景语义分割网络(MFF-Net)。所提网络以点的三维坐标和改进后的边特征作为输入,首先,利用K-近邻(KNN)算法搜寻点的近邻点,并在三维坐标和近邻点间坐标差值的基础上计算几何偏移量,从而增强点的局部几何特征表示;其次,将中心点与近邻点间的距离作为权重信息更新边特征,并引入空间注意力机制,获取特征间的语义信息;再次,通过计算近邻特征间的差值,利用均值池化操作进一步提取特征间的空间分布信息;最后,利用注意力池化操作融合三边特征。实验结果表明,所提网络在S3DIS(Stanford 3D large-scale Indoor Spaces)数据集上的平均交并比(mIoU)达到了67.5%,总体准确率(OA)达到了87.2%,相较于PointNet++分别提高10.2和3.4个百分点,可见MFF-Net在大型室内/室外场景均能获得良好的分割效果。 展开更多
关键词 点云 语义分割 空间注意力 注意力池化 特征融合
在线阅读 下载PDF
基于多粒度特征融合的叶片分类与分级方法
18
作者 刘松岳 王欢 《计算机科学》 CSCD 北大核心 2023年第3期216-222,共7页
长期以来,已有很多工作致力于研究植物叶片分类,虽然它们在公开数据集上表现较好,但实际应用并不理想,且难以应用于更复杂的问题,如叶片分级,即要求在对叶片进行分类的基础上,再对同一类的叶片进行更细级别(质量等级)的划分。为此,提出... 长期以来,已有很多工作致力于研究植物叶片分类,虽然它们在公开数据集上表现较好,但实际应用并不理想,且难以应用于更复杂的问题,如叶片分级,即要求在对叶片进行分类的基础上,再对同一类的叶片进行更细级别(质量等级)的划分。为此,提出了一种新的植物叶片分类以及分级模型,该模型关注叶片的多粒度信息,并将粗粒度与细粒度进行有效融合。该模型包含粗粒度和细粒度两个分支,由粒度混合损失将两个分支联系起来,促使模型逐步学习由粗到细的粒度表征。采用了多步骤训练方式,每一步提取不同层级的特征,实现浅层特征与深层特征的融合。此外,还提出了几何通道注意力模块,该模块由空间变换和双线性注意力池化组成,使模型可以关注图像中更具区分度的局部区域,提取出的特征更具区分性。所提方法在Flavia leaf和Swedish leaf两个公开的叶片分类数据集上分别达到了99.8%和99.7%的分类准确率,且在所构建的烟叶分级数据集上达到了71.9%的分级准确率,均超过了目前最优的方法。 展开更多
关键词 叶片分类 叶片分级 多粒度融合 空间变换网络 双线性注意力池化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部