针对直驱式永磁同步风力发电系统风速多变、非线性和强扰动的问题,提出一种基于模糊控制和线性自抗干扰控制(Linear Active Disturbance Retection Control,LADRC)的混合控制方法。首先对线性自抗扰中的扩张状态观测器(Linear Extended ...针对直驱式永磁同步风力发电系统风速多变、非线性和强扰动的问题,提出一种基于模糊控制和线性自抗干扰控制(Linear Active Disturbance Retection Control,LADRC)的混合控制方法。首先对线性自抗扰中的扩张状态观测器(Linear Extended State Observer,LESO)进行改进,提高对扰动观测的能力,同时利用模糊控制动态调整LADRC控制参数,增强系统的抗干扰能力和鲁棒性。仿真结果表明,与传统PI控制器相比,该方法能够更好地估计风速引起的转矩波动,准确跟踪额定转速,实现风能利用最大化。展开更多
针对永磁直驱风力发电系统非线性强和风速多变问题,提出一种基于高阶扩张状态观测器HOESO(highorder extended state observer)的最大功率跟踪控制方法。首先利用高阶扩张状态观测器精确估计出由风速突变引起的系统转矩和转速变化,然后...针对永磁直驱风力发电系统非线性强和风速多变问题,提出一种基于高阶扩张状态观测器HOESO(highorder extended state observer)的最大功率跟踪控制方法。首先利用高阶扩张状态观测器精确估计出由风速突变引起的系统转矩和转速变化,然后将其前馈补偿到快速终端滑模控制器中抵消干扰,增强系统的抗扰能力和鲁棒性。仿真结果表明,该方法能够实时估计风速引起的转矩扰动,转速控制精度高,实现最大程度利用风能。展开更多
文摘针对直驱式永磁同步风力发电系统风速多变、非线性和强扰动的问题,提出一种基于模糊控制和线性自抗干扰控制(Linear Active Disturbance Retection Control,LADRC)的混合控制方法。首先对线性自抗扰中的扩张状态观测器(Linear Extended State Observer,LESO)进行改进,提高对扰动观测的能力,同时利用模糊控制动态调整LADRC控制参数,增强系统的抗干扰能力和鲁棒性。仿真结果表明,与传统PI控制器相比,该方法能够更好地估计风速引起的转矩波动,准确跟踪额定转速,实现风能利用最大化。
文摘针对永磁直驱风力发电系统非线性强和风速多变问题,提出一种基于高阶扩张状态观测器HOESO(highorder extended state observer)的最大功率跟踪控制方法。首先利用高阶扩张状态观测器精确估计出由风速突变引起的系统转矩和转速变化,然后将其前馈补偿到快速终端滑模控制器中抵消干扰,增强系统的抗扰能力和鲁棒性。仿真结果表明,该方法能够实时估计风速引起的转矩扰动,转速控制精度高,实现最大程度利用风能。