期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Radarsat-2的水稻种植面积提取 被引量:8
1
作者 单捷 邱琳 +1 位作者 孙玲 王志明 《江苏农业学报》 CSCD 北大核心 2017年第3期561-567,共7页
选用2013年7月23日-10月27日期间5期分辨率为5.2 m×7.6 m的Radarsat-2影像为数据,采用支持向量机法(SVM)和最大似然法(MLC)分别对各时相水稻种植面积进行提取,并以地面实测GPS水稻样方进行精度验证。结果表明SVM和MLC方法的水稻面... 选用2013年7月23日-10月27日期间5期分辨率为5.2 m×7.6 m的Radarsat-2影像为数据,采用支持向量机法(SVM)和最大似然法(MLC)分别对各时相水稻种植面积进行提取,并以地面实测GPS水稻样方进行精度验证。结果表明SVM和MLC方法的水稻面积提取精度均在9月9日达到最高,所以选择在9月9日的水稻面积提取结果上研究耕地地块优化和碎小图斑去除对精度的影响。通过耕地地块优化和碎小图斑去除处理,水稻面积提取精度显著提高,SVM法由原先的72.876%提高到95.482%,MLC法由74.224%提高到91.792%。 展开更多
关键词 遥感 支持向量机 最大似然法 水稻种植面积提取
在线阅读 下载PDF
基于多时相合成孔径雷达数据的水稻种植面积监测 被引量:3
2
作者 郭玉娣 李根 +1 位作者 李春 梁冬坡 《江苏农业学报》 CSCD 北大核心 2023年第5期1179-1188,共10页
与光学遥感相比,合成孔径雷达(SAR)遥感能够不受云雨天气影响,为大范围作物种植信息的精准监测提供新手段。本研究以天津市小站稻为例,基于2018-2021年的多时相Sentinel-1A SAR影像,提出了结合小站稻生长特征相似性分析与随机森林分类... 与光学遥感相比,合成孔径雷达(SAR)遥感能够不受云雨天气影响,为大范围作物种植信息的精准监测提供新手段。本研究以天津市小站稻为例,基于2018-2021年的多时相Sentinel-1A SAR影像,提出了结合小站稻生长特征相似性分析与随机森林分类的水稻种植分布和面积监测方法。首先提取VV和VH极化方式下不同地物的后向散射系数时间序列特征曲线,并利用HANTS滤波来消除噪声影响。然后根据野外调查数据获取小站稻参考生长曲线,构建小站稻相似性指数,筛选出小站稻可能种植区域。最后采用随机森林分类模型提取小站稻种植面积。结果表明,基于多时相Sentinel-1A SAR影像相似性分析及随机森林分类能够获得较高精度的水稻种植面积,VV和VH两种极化方式下提取的水稻种植面积与统计年鉴结果的平均相对误差分别为2.67%和3.80%,总体分类精度分别达到95.52%和93.40%,Kappa系数分别为0.94和0.93;与不引入相似性指数进行分类相比,VV和VH极化方式下引入相似性指数后总体分类精度分别提高4.35个百分点和3.13个百分点,Kappa系数分别提高0.04和0.03,水稻的制图精度分别提高3.38个百分点和3.25个百分点。本研究结果为开展高精度水稻种植信息业务化监测提供参考。 展开更多
关键词 合成孔径雷达 随机森林 相似性指数 水稻种植面积提取
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部