期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于域自适应NWD-YOLOv5的复杂环境下水稻幼苗计数
1
作者
崔金荣
叶伟浩
+3 位作者
郑鸿
刘同来
齐龙
徐勇
《计算机工程》
北大核心
2025年第3期320-333,共14页
水稻种植初期经常会遇到绿色水藻等干扰微小水稻幼苗计数的复杂环境,使得微小水稻幼苗与背景难以区分,容易造成检测计数模型性能显著下降,然而目前通用的深度学习方法无法应对复杂跨域场景下的水稻幼苗检测计数任务。为此,提出一种基于...
水稻种植初期经常会遇到绿色水藻等干扰微小水稻幼苗计数的复杂环境,使得微小水稻幼苗与背景难以区分,容易造成检测计数模型性能显著下降,然而目前通用的深度学习方法无法应对复杂跨域场景下的水稻幼苗检测计数任务。为此,提出一种基于平均教师的域自适应NWD-YOLOv5模型,以解决无人机视角下的复杂环境微小水稻幼苗计数问题。为了提高模型对复杂背景下微小幼苗的检测计数能力,将基于平均教师模型的半监督域自适应训练策略集成到YOLOv5网络中,并且在YOLOv5的损失中使用基于归一化高斯Wasserstein距离(NWD)的预测框度量方法,来提高微小目标的正负样本分配准确性。实验结果表明:与原始的YOLOv5模型相比,改进模型泛化性能大幅提升,mAP@0.5值从60.0%提升到95.9%;与经典目标检测模型相比,所提的域自适应模型在mAP、模型大小和检测速度等指标上均有着较大优势;与传统人工方法相比,所提水稻幼苗计数方法准确率达到98.6%,计数时间仅为人工方法的1/5,决定系数R 2达到了0.9003;所提域自适应模型与监督学习方法Oracle性能接近,并且性能明显优于基准方法Source Only。所提方法可以大幅提高复杂多变环境下水稻植株计数的精度,能够作为水稻作物管理方法的技术支撑。
展开更多
关键词
水稻幼苗计数
平均教师模型
目标检测
YOLOv5
多目标跟踪
在线阅读
下载PDF
职称材料
题名
基于域自适应NWD-YOLOv5的复杂环境下水稻幼苗计数
1
作者
崔金荣
叶伟浩
郑鸿
刘同来
齐龙
徐勇
机构
华南农业大学数学与信息学院
仲恺农业工程学院信息科学与技术学院
华南农业大学水利与土木工程学院
哈尔滨工业大学(深圳)计算机科学与技术学院
出处
《计算机工程》
北大核心
2025年第3期320-333,共14页
基金
广东省重点领域研发计划项目(2023B0202130001)
国家水稻产业技术体系建设专项基金(CARS-01)
+3 种基金
岭南现代农业实验室科研项目(NT2021009)
广东省杰出青年基金(2019B151502056)
2023年广东省自然科学基金面上项目(2023A1515011230)
广东省安全智能新技术重点实验室项目(2022B1212010005)。
文摘
水稻种植初期经常会遇到绿色水藻等干扰微小水稻幼苗计数的复杂环境,使得微小水稻幼苗与背景难以区分,容易造成检测计数模型性能显著下降,然而目前通用的深度学习方法无法应对复杂跨域场景下的水稻幼苗检测计数任务。为此,提出一种基于平均教师的域自适应NWD-YOLOv5模型,以解决无人机视角下的复杂环境微小水稻幼苗计数问题。为了提高模型对复杂背景下微小幼苗的检测计数能力,将基于平均教师模型的半监督域自适应训练策略集成到YOLOv5网络中,并且在YOLOv5的损失中使用基于归一化高斯Wasserstein距离(NWD)的预测框度量方法,来提高微小目标的正负样本分配准确性。实验结果表明:与原始的YOLOv5模型相比,改进模型泛化性能大幅提升,mAP@0.5值从60.0%提升到95.9%;与经典目标检测模型相比,所提的域自适应模型在mAP、模型大小和检测速度等指标上均有着较大优势;与传统人工方法相比,所提水稻幼苗计数方法准确率达到98.6%,计数时间仅为人工方法的1/5,决定系数R 2达到了0.9003;所提域自适应模型与监督学习方法Oracle性能接近,并且性能明显优于基准方法Source Only。所提方法可以大幅提高复杂多变环境下水稻植株计数的精度,能够作为水稻作物管理方法的技术支撑。
关键词
水稻幼苗计数
平均教师模型
目标检测
YOLOv5
多目标跟踪
Keywords
rice seedling counting
Mean Teacher model
object detection
YOLOv5
multi-object tracking
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于域自适应NWD-YOLOv5的复杂环境下水稻幼苗计数
崔金荣
叶伟浩
郑鸿
刘同来
齐龙
徐勇
《计算机工程》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部