Permeable roads generally exhibit inferior mechanical properties and shorter service life than traditional dense-graded/impermeable roads.Furthermore,the incorporation of recycled aggregates in their construction may ...Permeable roads generally exhibit inferior mechanical properties and shorter service life than traditional dense-graded/impermeable roads.Furthermore,the incorporation of recycled aggregates in their construction may exacerbate these limitations.To address these issues,this study introduced a novel cement-stabilized permeable recycled aggregate material.A total of 162 beam specimens prepared with nine different levels of cement-aggregate ratio were tested to evaluate their permeability,bending load,and bending fatigue life.The experimental results indicate that increasing the content of recycled aggregates led to a reduction in both permeability and bending load.Additionally,the inclusion of recycled aggregates diminished the energy dissipation capacity of the specimens.These findings were used to establish a robust relationship between the initial damage in cement-stabilized permeable recycled aggregate material specimens and their fatigue life,and to propose a predictive model for their fatigue performance.Further,a method for assessing fatigue damage based on the evolution of fatigue-induced strain and energy dissipation was developed.The findings of this study provide valuable insights into the mechanical behavior and fatigue performance of cement-stabilized permeable recycled aggregate materials,offering guidance for the design of low-carbon-emission,permeable,and durable roadways incorporating recycled aggregates.展开更多
The reinforcement and stabilization of loess soil are duscussed by using fibers as the reinforcement and cement as the stabilization materials.To study the strength characteristics of loess soil reinforced by modified...The reinforcement and stabilization of loess soil are duscussed by using fibers as the reinforcement and cement as the stabilization materials.To study the strength characteristics of loess soil reinforced by modified polypropylene(MPP) fiber and cement,samples were prepared with six different fiber contents,three different cement contents,three different curing periods and three kinds of fiber length.The samples were tested under submergence and non-submergence conditions for the unconfined compressive strength(UCS),the splitting tensile strength and the compressive resilient modulus.The results indicated that combined reinforcement by PP fiber and cement could significantly improve the early strength of loess to 3.65–5.99 MPa in three days.With an increase in cement content,the specimens exhibited brittle fracture.However,the addition of fibers gradually modified the mode of fracture from brittle to ductile to plastic.The optimal dosage of fiber to reinforce loess was in the range of 0.3%–0.45% and the optimum fiber length was 12 mm,for which the unconfined compressive strength and tensile strength reached their maxima.Based on the analysis of failure properties,cement-reinforced loess specimens were susceptible to brittle damage under pressure,and the effect of modified polypropylene fiber as the connecting "bridge" could help the specimens achieve a satisfactory level of ductility when under pressure.展开更多
Considering the influence of strain softening, the solutions of stress, displacement, plastic softening region radius and plastic residual region radius were derived for circular openings in nonlinear rock masses subj...Considering the influence of strain softening, the solutions of stress, displacement, plastic softening region radius and plastic residual region radius were derived for circular openings in nonlinear rock masses subjected to seepage. The radial stress distribution curve, ground reaction curve, and relation curve between plastic softening region radius and supporting force in three different conditions were drawn respectively. From the comparisons among these results for different conditions, it is found that when the supporting force is the same, the displacement of tunnel wall considering both seepage and strain softening is 85.71% greater than that only considering seepage. The increase values of radial displacement at 0.95 m and plastic softening region radius at 6.6 m show that the seepage and strain softening have the most unfavorable effects on circular opening stability in strain softening rock masses.展开更多
基金Project(2024JJ2073)supported by the Science Fund for Distinguished Young Scholars of Hunan Province,ChinaProjects(2023YFC3807205,2019YFC1904704)+4 种基金supported by the National Key R&D Program of ChinaProject(52178443)supported by the National Natural Science Foundation of ChinaProject(2024ZZTS0109)supported by Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Permeable roads generally exhibit inferior mechanical properties and shorter service life than traditional dense-graded/impermeable roads.Furthermore,the incorporation of recycled aggregates in their construction may exacerbate these limitations.To address these issues,this study introduced a novel cement-stabilized permeable recycled aggregate material.A total of 162 beam specimens prepared with nine different levels of cement-aggregate ratio were tested to evaluate their permeability,bending load,and bending fatigue life.The experimental results indicate that increasing the content of recycled aggregates led to a reduction in both permeability and bending load.Additionally,the inclusion of recycled aggregates diminished the energy dissipation capacity of the specimens.These findings were used to establish a robust relationship between the initial damage in cement-stabilized permeable recycled aggregate material specimens and their fatigue life,and to propose a predictive model for their fatigue performance.Further,a method for assessing fatigue damage based on the evolution of fatigue-induced strain and energy dissipation was developed.The findings of this study provide valuable insights into the mechanical behavior and fatigue performance of cement-stabilized permeable recycled aggregate materials,offering guidance for the design of low-carbon-emission,permeable,and durable roadways incorporating recycled aggregates.
基金Project(050101)supported by Horizontal Research Foundation of PLA Air Force Engineering University,ChinaProject(51478462)supported by the National Natural Science Foundation of China
文摘The reinforcement and stabilization of loess soil are duscussed by using fibers as the reinforcement and cement as the stabilization materials.To study the strength characteristics of loess soil reinforced by modified polypropylene(MPP) fiber and cement,samples were prepared with six different fiber contents,three different cement contents,three different curing periods and three kinds of fiber length.The samples were tested under submergence and non-submergence conditions for the unconfined compressive strength(UCS),the splitting tensile strength and the compressive resilient modulus.The results indicated that combined reinforcement by PP fiber and cement could significantly improve the early strength of loess to 3.65–5.99 MPa in three days.With an increase in cement content,the specimens exhibited brittle fracture.However,the addition of fibers gradually modified the mode of fracture from brittle to ductile to plastic.The optimal dosage of fiber to reinforce loess was in the range of 0.3%–0.45% and the optimum fiber length was 12 mm,for which the unconfined compressive strength and tensile strength reached their maxima.Based on the analysis of failure properties,cement-reinforced loess specimens were susceptible to brittle damage under pressure,and the effect of modified polypropylene fiber as the connecting "bridge" could help the specimens achieve a satisfactory level of ductility when under pressure.
基金Project(09JJ1008) supported by Hunan Provincial Science Foundation of ChinaProject(200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China
文摘Considering the influence of strain softening, the solutions of stress, displacement, plastic softening region radius and plastic residual region radius were derived for circular openings in nonlinear rock masses subjected to seepage. The radial stress distribution curve, ground reaction curve, and relation curve between plastic softening region radius and supporting force in three different conditions were drawn respectively. From the comparisons among these results for different conditions, it is found that when the supporting force is the same, the displacement of tunnel wall considering both seepage and strain softening is 85.71% greater than that only considering seepage. The increase values of radial displacement at 0.95 m and plastic softening region radius at 6.6 m show that the seepage and strain softening have the most unfavorable effects on circular opening stability in strain softening rock masses.