期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Stacking集成学习的水电机组负荷分配
1
作者 郑晓楠 于洋 +5 位作者 潘虹 郑源 杭晨阳 杨杰 马晓瑶 陈致远 《排灌机械工程学报》 北大核心 2025年第10期1040-1048,共9页
在水电机组大型化、运行工况复杂化背景下,针对传统水电机组负荷分配中存在的寻优时间长、易陷入局部最优、结果不稳定等问题,提出一种基于Stacking集成学习模型和约束修正的水电机组负荷分配方法.首先,将历史数据输入至Stacking集成学... 在水电机组大型化、运行工况复杂化背景下,针对传统水电机组负荷分配中存在的寻优时间长、易陷入局部最优、结果不稳定等问题,提出一种基于Stacking集成学习模型和约束修正的水电机组负荷分配方法.首先,将历史数据输入至Stacking集成学习模型进行训练,采用K折交叉验证方法缓解重复学习造成的过拟合,得到机组负荷分配初始方案;其次,对初始方案进行负荷平衡、出力限制、机组组合等约束修正,不断逼近历史决策,形成最终决策方案.以某电站为例,采用耗水量、出力波动率等指标评价分配结果并与传统动态规划法进行对比,通过集成,模型训练完成后在线进行负荷分配,所需时间仅为2.04 s,决策时间大幅缩短,预测精度和鲁棒性显著提高,可为机组负荷分配提供一定参考. 展开更多
关键词 水电机组负荷分配 厂内经济运行 Stacking集成学习 约束修正 机器学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部