There are presently two ways to realize “controlled/living radical polymerization”: one is by a reversible termination or reversible chain transfer to make active polymer chains continuously propagate; the other is ...There are presently two ways to realize “controlled/living radical polymerization”: one is by a reversible termination or reversible chain transfer to make active polymer chains continuously propagate; the other is by a physical method to suppress chain termination and to prolong radical lifetime. Here we report a new method called Graduation Initiating Radical Polymerization System for realizing “controlled/living radical polymerization”. Its principle and experimental setup are as follows: firstly, initiatable groups(i.e. peroxide groups) were introduced onto the polymer substrates like LDPE film by photo-oxidation reaction; secondly, the films carried peroxide groups were put and fixed to the bottom of polymerization bottle containing monomer and solvent. Afterwards, they were made to produce radicals(by heating or reductive agent), and finally the system polymerization was initiated. Once these radicals are produced on the surface of these films, they will undergo three different processes: terminating by combination, diffusing to monomer solution and taking in monomers(polymerizing). The reactive diffusion makes this system produce “two graduation”: one is the graduation of radical concentration(i.e. the farther away from the surface of the film, the lower radical concentration); the other is the length-graduation of living chains,\{i.e.\} the farther away from the surface of the film the longer the propagating chains. By this way, we could obtain a polymerization field where the radical concentration is very low and there are no primary free radicals approximately, which are benefit to realize “controlled/living radical polymerization”. This communication reports the first experimental results based on the above idea: with benzophenone(BP) as photo-catalyst and peroxide groups introduced on the LDPE surface in a concentration 10^-8 mol/cm^2; by these peroxided films as the sources of free radicals, polyacrylamide and polyacrylic acid were obtained with molecular weights more than 20 millions.展开更多
通过开环聚合(ROP)、DCC偶合反应及原子转移自由基聚合(ATRP)合成3种不同臂数(线性、三臂和六臂)的聚己内酯-b-聚乙二醇-b-聚甲基丙烯酸(2-羟乙酯)(PCL-PEG-PHEMA)三嵌段共聚物。通过核磁氢谱(1 H NMR)红外谱图证明合成了设计产物。以...通过开环聚合(ROP)、DCC偶合反应及原子转移自由基聚合(ATRP)合成3种不同臂数(线性、三臂和六臂)的聚己内酯-b-聚乙二醇-b-聚甲基丙烯酸(2-羟乙酯)(PCL-PEG-PHEMA)三嵌段共聚物。通过核磁氢谱(1 H NMR)红外谱图证明合成了设计产物。以溶剂挥发法制备胶束并进行载药实验。用激光粒度仪测定胶束粒径、粒径分布及zeta电位,用荧光光谱仪以芘荧光探针法测定临界胶束浓度,用紫外-可见分光光度计表征胶束载药量、包封率。结果表明,3种三嵌段共聚物均能形成稳定的载药胶束,其中具有星形结构的六臂的三嵌段共聚物具有最低的胶束粒径和临界胶束浓度、最高的载药量和包封率。因此,星形六臂的PCL-PEG-PHEMA可作为新的药物载体材料。展开更多
文摘There are presently two ways to realize “controlled/living radical polymerization”: one is by a reversible termination or reversible chain transfer to make active polymer chains continuously propagate; the other is by a physical method to suppress chain termination and to prolong radical lifetime. Here we report a new method called Graduation Initiating Radical Polymerization System for realizing “controlled/living radical polymerization”. Its principle and experimental setup are as follows: firstly, initiatable groups(i.e. peroxide groups) were introduced onto the polymer substrates like LDPE film by photo-oxidation reaction; secondly, the films carried peroxide groups were put and fixed to the bottom of polymerization bottle containing monomer and solvent. Afterwards, they were made to produce radicals(by heating or reductive agent), and finally the system polymerization was initiated. Once these radicals are produced on the surface of these films, they will undergo three different processes: terminating by combination, diffusing to monomer solution and taking in monomers(polymerizing). The reactive diffusion makes this system produce “two graduation”: one is the graduation of radical concentration(i.e. the farther away from the surface of the film, the lower radical concentration); the other is the length-graduation of living chains,\{i.e.\} the farther away from the surface of the film the longer the propagating chains. By this way, we could obtain a polymerization field where the radical concentration is very low and there are no primary free radicals approximately, which are benefit to realize “controlled/living radical polymerization”. This communication reports the first experimental results based on the above idea: with benzophenone(BP) as photo-catalyst and peroxide groups introduced on the LDPE surface in a concentration 10^-8 mol/cm^2; by these peroxided films as the sources of free radicals, polyacrylamide and polyacrylic acid were obtained with molecular weights more than 20 millions.
文摘通过开环聚合(ROP)、DCC偶合反应及原子转移自由基聚合(ATRP)合成3种不同臂数(线性、三臂和六臂)的聚己内酯-b-聚乙二醇-b-聚甲基丙烯酸(2-羟乙酯)(PCL-PEG-PHEMA)三嵌段共聚物。通过核磁氢谱(1 H NMR)红外谱图证明合成了设计产物。以溶剂挥发法制备胶束并进行载药实验。用激光粒度仪测定胶束粒径、粒径分布及zeta电位,用荧光光谱仪以芘荧光探针法测定临界胶束浓度,用紫外-可见分光光度计表征胶束载药量、包封率。结果表明,3种三嵌段共聚物均能形成稳定的载药胶束,其中具有星形结构的六臂的三嵌段共聚物具有最低的胶束粒径和临界胶束浓度、最高的载药量和包封率。因此,星形六臂的PCL-PEG-PHEMA可作为新的药物载体材料。