Ferrite-rich calcium sulfoaluminate(FCSA)cement is often used in special projects such as marine engineering due to its excellent resistance of seawater attack although the cost is a little high.Ground granulated blas...Ferrite-rich calcium sulfoaluminate(FCSA)cement is often used in special projects such as marine engineering due to its excellent resistance of seawater attack although the cost is a little high.Ground granulated blast furnace slag(GGBS),a byproduct of industrial production,is used as a mineral admixture to reduce concrete costs and provide excellent performance.This study aimed to investigate the impact of GGBS on the hydration properties of FCSA cement in seawater.Tests were conducted on heat of hydration,compressive strength,mass change,and pH value of pore solution of FCSA cement paste with a water-to-binder ratio of 0.45.X-ray diffraction(XRD)analysis and thermogravimetric analysis were used to determine the hydration products,while mercury intrusion porosimetry(MIP)was used to measure pore structure.The results indicated that the FCSA cement hydration showed a concentrated heat release at early age.The compressive strength of specimens consistently increased over time,where seawater curing enhanced the compressive strength of control samples.The pH value of pore solution decreased to 10.7−10.9 at 90 d when cured in seawater.The primary hydration products of FCSA cement included ettringite,iron hydroxide gel(FH_(3)),and aluminum hydroxide gel(AH_(3)).Moreover,when cured in seawater,Friedel’s salt was formed,which enhanced the compressive strength of the specimen and increased its coefficient of corrosion.Seawater curing gradually increased sample mass,and GGBS refined pore structure while reducing harmful pore proportions.These results suggest that while GGBS can refine pore structure and improve certain aspects of performance,its inclusion may also reduce compressive strength,highlighting the need for a balanced approach in its use for marine applications.展开更多
To understand the effect of steam curing temperature on the hydrate and microstructure of hardened cement paste,several measuring methods including X-ray diffraction(XRD),atomic absorption spectroscopy(ASS),ion chroma...To understand the effect of steam curing temperature on the hydrate and microstructure of hardened cement paste,several measuring methods including X-ray diffraction(XRD),atomic absorption spectroscopy(ASS),ion chromatography,conductivity meter,alternating-current impedance spectroscopy and nuclear magnetic resonance(NMR)are employed to investigate the hydration characteristics,pore solution composition and conductivity,resistivity and pore structure during the steam curing process.Experimental results show that steam curing promotes the hydration process,greatly raises the resistivity,and decreases the porosity of specimen at early age.Compared with being treated at 45℃,higher temperature leads to a fast decomposition of ettringite at initial stage of the constant temperature treatment period,which improves the relative content and ionic activity of the conductive ions in pore solution.Furthermore,the number of pores larger than 200 nm increases significantly,which reduces the resistivity of the hardened cement paste.Cement paste treated at 45℃ has a more stable and denser microstructure with less damages.展开更多
Steam-cured condition is found to cause larger porosity and worse properties of concrete compared with normal curing condition. For the sake of seeking effective measurements to eliminate this bad effect of steam-cure...Steam-cured condition is found to cause larger porosity and worse properties of concrete compared with normal curing condition. For the sake of seeking effective measurements to eliminate this bad effect of steam-cured condition on concrete, the water sorptivity and pore structure of steam-cured concretes exposed to different subsequent curing conditions were investigated after steam-curing treatment. The capillary absorption coefficient and porosity of the corresponding concretes were analyzed, and their mechanisms were also discussed. The results indicate that water sorptivity and pore structure of steam-cured concrete are greatly influenced by the curing condition used in subsequent ages. Exposure steam-cured concrete to air condition has an obviously bad effect on its properties and microstructures. Adopting subsequent curing of immersing steam-cured concrete into about 20℃ water after steam curing period can significantly decrease its capillary absorption coefficient and porosity. Steam-cured concrete with 7 d water curing has minimum capillary absorption coefficient and total porosity. Its water sorptivity is decreased by 23% compared with standard curing concrete and the porosity is 9.6% lower. Moreover, the corresponding gradient of water sorptivity and porosity of steam-cured concrete both decrease, thus mictostructure of concrete becomes more homogeneous.展开更多
The early-age thermal cracking easily generates and severely impairs the durability of concrete.The temperature rising inhibitor(TRI)was utilized to regulate the temperature evolution by controlling the cement hydrati...The early-age thermal cracking easily generates and severely impairs the durability of concrete.The temperature rising inhibitor(TRI)was utilized to regulate the temperature evolution by controlling the cement hydration process.This paper aimed to investigate the pore structure formation and hydration characteristics of cement paste containing TRI by low-field nuclear magnetic resonance.The experiment showed that the T_(2) peak of cement paste shifted from 7.32 ms to 0.23 ms regardless of TRI addition.But the pattern of pore structure formation was changed with TRI addition,that is,the pore structure formation was delayed,and the pore successively shifted to left in two parts.In addition,TRI addition significantly prolonged the duration of gel pore formation and greatly decreased the increase rate of gel water,which implied that TRI introduction hindered the growth of C-S-H,and subsequently decreased the hydration rates and delayed the main hydration peak.Meanwhile,TRI dissolved and diffused rapidly at 40℃,delaying the hydration of cement paste seriously.Moreover,TRI brought about the C-S-H nucleation homogeneous and the ion concentration uniform,which might reduce the localized curvature occurring on the sheet of C-S-H,and then decreased the T_(2) intensity of capillary water and gel water.展开更多
Cracks easily generate in concrete at early age owing to the shrinkage deformation.CaO-based expansion agent(CEA)and superabsorbent polymers(SAP)have been extensively used for the mitigation of concrete shrinkage.The ...Cracks easily generate in concrete at early age owing to the shrinkage deformation.CaO-based expansion agent(CEA)and superabsorbent polymers(SAP)have been extensively used for the mitigation of concrete shrinkage.The macroscopic properties of concrete are highly determined by the microstructure.In this study,the influence of CEA and SAP addition on the pore structure evolution of cement paste under different curing temperatures was evaluated via low-field nuclear magnetic resonance spectroscopy.Test results indicated that,in cement paste,a higher CEA content led to a higher porosity and a larger most probable pore diameter(MPPD).Meanwhile,SAP addition increased the porosity and MPPD of CEA cement paste at early age but decreased them after 7 d,and a higher SAP content always brought a higher porosity and MPPD.Furthermore,the addition of SAP led to a lower porosity and MPPD of CEA cement paste than that of plain cement paste after 14 d.Moreover,the porosity and MPPD of CEA cement paste decreased first and subsequently increased as the curing temperature raised.展开更多
As the second most important solid waste produced by coal-fired power plants,the improper management of coal-fired slag has the potential to result in environmental pollution.It is therefore imperative that high-value...As the second most important solid waste produced by coal-fired power plants,the improper management of coal-fired slag has the potential to result in environmental pollution.It is therefore imperative that high-value utilization pathways for coal-fired slag should be developed.In this study,modified magnesium slag(MMS),produced by a magnesium smelter,was selected as the alkali activator.The activated silica-aluminum solid wastes,namely coal-fired slag(CFS)and mineral powder(MP),were employed as pozzolanic materials in the preparation of alkali-activated cementitious materials.The alkali-activated cementitious materials prepared with 50 wt%MMS,40 wt%CFS and 10 wt%MP exhibited favorable mechanical properties,with a compressive strength of 32.804 MPa in the paste sample cured for 28 d.Then,the activated silica-aluminum solid waste consisting of CFS-MP generated a significant amount of C-S(A)-H gels,AFt,and other products,which were observed to occupy the pore structure of the specimen.In addition,the secondary hydration reaction of CFS-MP occurs in high alkalinity environments,resulting in the formation of a mutually stimulated and promoted reaction system between CFS-MP and MMS,this will subsequently accelerate the hydrolysis reaction of MMS.It is important to emphasize that the amount of MMS in alkali-activated cementitious materials must be strictly regulated to avert the potential issue of incomplete depolymerization-repolymerization of active silica-aluminum solid waste containing CFS-MP.This in turn could have a deleterious impact on the late strength of the cementitious materials.The aim of this work is to improve the joint disposal of MMS,CFS and MP and thereby provide a scientific basis for the development of environmentally friendly and low-carbon modified magnesium slag alkali-activated coal-fired slag based cementitious materials for mine backfilling.展开更多
The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplore...The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplored challenge of substantial electrochemical overpotential,surface reconstruction has emerged as a necessary strategy.Focusing on key aspects such as Janus structures,overflow effects,the d-band center displacement hypothesis,and interface coupling related to electrochemical reactions is essential for water electrolysis.Emerging as frontrunners among next-generation electrocatalysts,Mott-Schottky(M-S)catalysts feature a heterojunction formed between a metal and a semiconductor,offering customizable and predictable interfacial synergy.This review offers an in-depth examination of the processes driving the hydrogen and oxygen evolution reactions(HER and OER),highlighting the benefits of employing nanoscale transition metal nitrides,carbides,oxides,and phosphides in M-S heterointerface catalysts.Furthermore,the challenges,limitations,and future prospects of employing M-S heterostructured catalysts for water splitting are thoroughly discussed.展开更多
基金Project(2023DJC182)supported by the Department of Science and Technology of Hubei Province,ChinaProjects(51608402,51602229)supported by the National Natural Science Foundation of ChinaProject(2021-2075-38)supported by the Department of Housing and Urban-Rural Development of Hubei Province,China。
文摘Ferrite-rich calcium sulfoaluminate(FCSA)cement is often used in special projects such as marine engineering due to its excellent resistance of seawater attack although the cost is a little high.Ground granulated blast furnace slag(GGBS),a byproduct of industrial production,is used as a mineral admixture to reduce concrete costs and provide excellent performance.This study aimed to investigate the impact of GGBS on the hydration properties of FCSA cement in seawater.Tests were conducted on heat of hydration,compressive strength,mass change,and pH value of pore solution of FCSA cement paste with a water-to-binder ratio of 0.45.X-ray diffraction(XRD)analysis and thermogravimetric analysis were used to determine the hydration products,while mercury intrusion porosimetry(MIP)was used to measure pore structure.The results indicated that the FCSA cement hydration showed a concentrated heat release at early age.The compressive strength of specimens consistently increased over time,where seawater curing enhanced the compressive strength of control samples.The pH value of pore solution decreased to 10.7−10.9 at 90 d when cured in seawater.The primary hydration products of FCSA cement included ettringite,iron hydroxide gel(FH_(3)),and aluminum hydroxide gel(AH_(3)).Moreover,when cured in seawater,Friedel’s salt was formed,which enhanced the compressive strength of the specimen and increased its coefficient of corrosion.Seawater curing gradually increased sample mass,and GGBS refined pore structure while reducing harmful pore proportions.These results suggest that while GGBS can refine pore structure and improve certain aspects of performance,its inclusion may also reduce compressive strength,highlighting the need for a balanced approach in its use for marine applications.
基金Projects(U1534207,11790283,51878583)supported by the National Natural Science Foundation of China。
文摘To understand the effect of steam curing temperature on the hydrate and microstructure of hardened cement paste,several measuring methods including X-ray diffraction(XRD),atomic absorption spectroscopy(ASS),ion chromatography,conductivity meter,alternating-current impedance spectroscopy and nuclear magnetic resonance(NMR)are employed to investigate the hydration characteristics,pore solution composition and conductivity,resistivity and pore structure during the steam curing process.Experimental results show that steam curing promotes the hydration process,greatly raises the resistivity,and decreases the porosity of specimen at early age.Compared with being treated at 45℃,higher temperature leads to a fast decomposition of ettringite at initial stage of the constant temperature treatment period,which improves the relative content and ionic activity of the conductive ions in pore solution.Furthermore,the number of pores larger than 200 nm increases significantly,which reduces the resistivity of the hardened cement paste.Cement paste treated at 45℃ has a more stable and denser microstructure with less damages.
基金Project(2008G031-18) supported by the Ministry of Railway Science and Technology Research Foundation of ChinaProject(2010R50034) supported by the Key Science and Technology Innovation Team Program of Zhejiang Province, ChinaProject(2010QZZD018) supported by Leading-edge Research Program of Central South University,China
文摘Steam-cured condition is found to cause larger porosity and worse properties of concrete compared with normal curing condition. For the sake of seeking effective measurements to eliminate this bad effect of steam-cured condition on concrete, the water sorptivity and pore structure of steam-cured concretes exposed to different subsequent curing conditions were investigated after steam-curing treatment. The capillary absorption coefficient and porosity of the corresponding concretes were analyzed, and their mechanisms were also discussed. The results indicate that water sorptivity and pore structure of steam-cured concrete are greatly influenced by the curing condition used in subsequent ages. Exposure steam-cured concrete to air condition has an obviously bad effect on its properties and microstructures. Adopting subsequent curing of immersing steam-cured concrete into about 20℃ water after steam curing period can significantly decrease its capillary absorption coefficient and porosity. Steam-cured concrete with 7 d water curing has minimum capillary absorption coefficient and total porosity. Its water sorptivity is decreased by 23% compared with standard curing concrete and the porosity is 9.6% lower. Moreover, the corresponding gradient of water sorptivity and porosity of steam-cured concrete both decrease, thus mictostructure of concrete becomes more homogeneous.
基金Projects(51878245,U1965105) supported by the National Natural Science Foundation of ChinaProject(2017YFB0310100) supported by the National Key R&D Program of ChinaProject(2019CEM001) supported by the State Key Laboratory of High Performance Civil Engineering Materials,China。
文摘The early-age thermal cracking easily generates and severely impairs the durability of concrete.The temperature rising inhibitor(TRI)was utilized to regulate the temperature evolution by controlling the cement hydration process.This paper aimed to investigate the pore structure formation and hydration characteristics of cement paste containing TRI by low-field nuclear magnetic resonance.The experiment showed that the T_(2) peak of cement paste shifted from 7.32 ms to 0.23 ms regardless of TRI addition.But the pattern of pore structure formation was changed with TRI addition,that is,the pore structure formation was delayed,and the pore successively shifted to left in two parts.In addition,TRI addition significantly prolonged the duration of gel pore formation and greatly decreased the increase rate of gel water,which implied that TRI introduction hindered the growth of C-S-H,and subsequently decreased the hydration rates and delayed the main hydration peak.Meanwhile,TRI dissolved and diffused rapidly at 40℃,delaying the hydration of cement paste seriously.Moreover,TRI brought about the C-S-H nucleation homogeneous and the ion concentration uniform,which might reduce the localized curvature occurring on the sheet of C-S-H,and then decreased the T_(2) intensity of capillary water and gel water.
基金Projects(51878245,U1965105)supported by the National Natural Science Foundation of ChinaProject(2019GSF110006)supported by the Key Research and Development Program of Shandong Province,China+2 种基金Project(2020Z035)supported by the Ningbo 2025 Science and Technology Major Project,ChinaProject(KJ2017B01)supported by the Scientific Research Project of Department of Education of Anhui Province,ChinaProject(2019CEM001)supported by the State Key Laboratory of High Performance Civil Engineering Materials,China。
文摘Cracks easily generate in concrete at early age owing to the shrinkage deformation.CaO-based expansion agent(CEA)and superabsorbent polymers(SAP)have been extensively used for the mitigation of concrete shrinkage.The macroscopic properties of concrete are highly determined by the microstructure.In this study,the influence of CEA and SAP addition on the pore structure evolution of cement paste under different curing temperatures was evaluated via low-field nuclear magnetic resonance spectroscopy.Test results indicated that,in cement paste,a higher CEA content led to a higher porosity and a larger most probable pore diameter(MPPD).Meanwhile,SAP addition increased the porosity and MPPD of CEA cement paste at early age but decreased them after 7 d,and a higher SAP content always brought a higher porosity and MPPD.Furthermore,the addition of SAP led to a lower porosity and MPPD of CEA cement paste than that of plain cement paste after 14 d.Moreover,the porosity and MPPD of CEA cement paste decreased first and subsequently increased as the curing temperature raised.
基金Projects(52222404,52074212)supported by the National Natural Science Foundation of ChinaProject(2023-LL-QY-07)supported by the Two-chain Integration Key Projects in Shaanxi Province,China。
文摘As the second most important solid waste produced by coal-fired power plants,the improper management of coal-fired slag has the potential to result in environmental pollution.It is therefore imperative that high-value utilization pathways for coal-fired slag should be developed.In this study,modified magnesium slag(MMS),produced by a magnesium smelter,was selected as the alkali activator.The activated silica-aluminum solid wastes,namely coal-fired slag(CFS)and mineral powder(MP),were employed as pozzolanic materials in the preparation of alkali-activated cementitious materials.The alkali-activated cementitious materials prepared with 50 wt%MMS,40 wt%CFS and 10 wt%MP exhibited favorable mechanical properties,with a compressive strength of 32.804 MPa in the paste sample cured for 28 d.Then,the activated silica-aluminum solid waste consisting of CFS-MP generated a significant amount of C-S(A)-H gels,AFt,and other products,which were observed to occupy the pore structure of the specimen.In addition,the secondary hydration reaction of CFS-MP occurs in high alkalinity environments,resulting in the formation of a mutually stimulated and promoted reaction system between CFS-MP and MMS,this will subsequently accelerate the hydrolysis reaction of MMS.It is important to emphasize that the amount of MMS in alkali-activated cementitious materials must be strictly regulated to avert the potential issue of incomplete depolymerization-repolymerization of active silica-aluminum solid waste containing CFS-MP.This in turn could have a deleterious impact on the late strength of the cementitious materials.The aim of this work is to improve the joint disposal of MMS,CFS and MP and thereby provide a scientific basis for the development of environmentally friendly and low-carbon modified magnesium slag alkali-activated coal-fired slag based cementitious materials for mine backfilling.
基金supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2021L574)the Guizhou Provincial Science and Technology Foundation([2024]ZK General 425 and 438)+1 种基金the National Natural Science Foundation of China(22309033)the Academic Young Talent Foundation of Guizhou Normal University([2022]B05 and B06)。
文摘The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplored challenge of substantial electrochemical overpotential,surface reconstruction has emerged as a necessary strategy.Focusing on key aspects such as Janus structures,overflow effects,the d-band center displacement hypothesis,and interface coupling related to electrochemical reactions is essential for water electrolysis.Emerging as frontrunners among next-generation electrocatalysts,Mott-Schottky(M-S)catalysts feature a heterojunction formed between a metal and a semiconductor,offering customizable and predictable interfacial synergy.This review offers an in-depth examination of the processes driving the hydrogen and oxygen evolution reactions(HER and OER),highlighting the benefits of employing nanoscale transition metal nitrides,carbides,oxides,and phosphides in M-S heterointerface catalysts.Furthermore,the challenges,limitations,and future prospects of employing M-S heterostructured catalysts for water splitting are thoroughly discussed.