To enhance the nitrogen removal,a systemic monitoring of the biological and hydrological parameters of Carrousel oxidation ditch in Chongqing Jingkou Wastewater Treatment Plant was carried out to study the feasibility...To enhance the nitrogen removal,a systemic monitoring of the biological and hydrological parameters of Carrousel oxidation ditch in Chongqing Jingkou Wastewater Treatment Plant was carried out to study the feasibility of simultaneous nitrification and denitrification(SND).The variation and distribution of parameters such as flow velocity,concentration of dissolved oxygen(DO) and mixed liquor suspended solids(MLSS) in oxidation ditch were monitored and analyzed,which were major control factors for SND.The results showed that,the dimensional distribution of flow velocity,DO and MLSS were affected significantly by the operation condition of the aeration wheels.With all the four aeration wheels being in operation,DO and flow velocity were higher and the mixing of MLSS was sufficient.With three aeration wheels being in operation,the flow velocity in most of the bottom areas was enough to meet the basic requirements of no deposition,and the anaerobic region and aerobic region could exist simultaneously in one oxidation ditch,which was helpful to the process of SND.According to spatial distribution characteristics of the flow velocity,DO and soluble components under optimized condition,different functional zones of biochemical reaction in the Carrousel oxidation ditch system were defined,which might contribute to the optimization control and SND of Carrousel oxidation ditch.展开更多
The cyclic oxidation behavior of Fe-9Cr-1Mo steel (9Cr-1Mo) in 10%H2O+90%Ar (volume fraction) atmosphere at 600, 650 and 700 ℃ for various time was studied. The oxidation mechanism of 9Cr-1Mo steel in 10%H2O+90%Ar at...The cyclic oxidation behavior of Fe-9Cr-1Mo steel (9Cr-1Mo) in 10%H2O+90%Ar (volume fraction) atmosphere at 600, 650 and 700 ℃ for various time was studied. The oxidation mechanism of 9Cr-1Mo steel in 10%H2O+90%Ar atmosphere was discussed. The thermal stress was evaluated in two oxide layers to illustrate the spallation of the oxide layer. The experimental results indicate that there exists a duplex oxide scale with an outer layer of Fe2O3 and an inner layer of mixed (Fe, Cr)3O4 formed on 9Cr-1Mo steel during cyclic oxidation. Some cracks generated in both inner and outer oxide layers. Parts of oxide scales spalled from substrate during the cyclic oxidation. A higher tensile stress in the oxide layer is formed at the early oxidation stage than at the later oxidation stage during heating. This tensile stress results in the formation of cracks in the oxide layer.展开更多
Distinguishing geochemical anomalies from background is a basic task in exploratory geochemistry. The derivation of geochemical anomalies from stream sediment geochemical data and the decomposition of these anomalies ...Distinguishing geochemical anomalies from background is a basic task in exploratory geochemistry. The derivation of geochemical anomalies from stream sediment geochemical data and the decomposition of these anomalies into their component patterns were described. A set of stream sediment geochemical data was obtained for 1 880 km 2 of the Pangxidong area, which is in the southern part of the recently recognized Qinzhou-Hangzhou joint tectonic belt. This belt crosses southern China and tends to the northwest (NE) direction. The total number of collected samples was 7 236, and the concentrations of Ag, Au, Cu, As, Pb and Zn were measured for each sample. The spatial combination distribution law of geochemical elements and principal component analysis (PCA) were used to construct combination models for the identification of combinations of geochemical anomalies. Spectrum-area (S-A) fractal modeling was used to strengthen weak anomalies and separate them from the background. Composite anomaly modeling was combined with fractal filtering techniques to process and analyze the geochemical data. The raster maps of Au, Ag, Cu, As, Pb and Zn were obtained by the multifractal inverse distance weighted (MIDW) method. PCA was used to combine the Au, Ag, Cu, As, Pb, and Zn concentration values. The S-A fractal method was used to decompose the first component pattern achieved by the PCA. The results show that combination anomalies from a combination of variables coincide with the known mineralization of the study area. Although the combination anomalies cannot reflect local anomalies closely enough, high-anomaly areas indicate good sites for further exploration for unknown deposits. On this basis, anomaly and background separation from combination anomalies using fractal filtering techniques can provide guidance for later work.展开更多
As a new kind of air-hardening soil reinforcement material,polymer is being widely applied in river-bank slope reinforcement and ecological slope protection area.Thus,more attention should be paid to study the charact...As a new kind of air-hardening soil reinforcement material,polymer is being widely applied in river-bank slope reinforcement and ecological slope protection area.Thus,more attention should be paid to study the characteristics of reinforced soil after immersion.In this study,water-induced changes in strength characteristics of sand reinforced with polymer and fibers were reported.Several factors,including polymer content(1%,2%,3%and 4%by weight of dry sand),immersion time(6,12,24 and 48 h),dry density(1.40,1.45,1.50,1.55 and 1.60 g/cm^(3),)and fiber content(0.2%,0.4%,0.6%and 0.8%by weight of dry sand)which may influence the strength characteristics of reinforced sand after immersion were analyzed.The microstructure of reinforced sand was analyzed with nuclear magnetic resonance(NMR)and scanning electron microscope(SEM).Experimental results indicate that the compressive strength increases with the increase of polymer content and decreases with the increase of immersion time;the softening coefficients decrease with the increase of the polymer content and immersion time and increase with an increment in density and fiber content.Fiber plays an active role in reducing water-induced loss of strength at 0.6%content.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
The improvement of question soils with cement shows great technical, economic and environmental advantages. And interest in introducing electrical resistivity measurement to assess the quality of cement treated soils ...The improvement of question soils with cement shows great technical, economic and environmental advantages. And interest in introducing electrical resistivity measurement to assess the quality of cement treated soils has increased markedly recently due to its economical, non-destructive, and relatively non-invasive advantages. This work aims to quantify the effect of cement content (aw), porosity (nt), and curing time(T) on the electrical resistivity (p) and unconfined compression strength (UCS) of cement treated soil. A series of electrical resistivity tests and UCS tests of cement treated soil specimen after various curing periods were carried out. A modified Archie empirical law was proposed taking into account the effect of cement content and curing period on the electrical resistivity of cement treated soil. The results show that nt/(aw·T) and nt/(aw·T^1/2) ratio are appropriate parameters to assess electrical resistivity and UCS of cement treated soil, respectively. Finally, the relationship between UCS and electrical resistivity was also established.展开更多
In order to investigate the mechanism of nanoparticles enhancing the heat and mass transfer of the ammonia-water absorption process,several types of binary nanofluids were prepared by mixing Al2O3 nanoparticles with p...In order to investigate the mechanism of nanoparticles enhancing the heat and mass transfer of the ammonia-water absorption process,several types of binary nanofluids were prepared by mixing Al2O3 nanoparticles with polyacrylic acid(PAA),TiO2 with polyethylene glycol(PEG 1000),and TiN,SiC,hydroxyapatite(noodle-like) with PEG 10000 to ammonia-water solution,respectively.The thermal conductivities were measured by using a KD2 Pro thermal properties analyzer.The influences of surfactant and ammonia on the dispersion stabilities of the binary nanofluids were investigated by the light absorbency ratio index methods.The results show that the type,content and size of nanoparticles,the temperature as well as the dispersion stability are the key parameters that affect the thermal conductivity of nanofluids.For the given nanoparticle material and the base fluid,the thermal conductivity ratio of the nanofluid to the ammonia-water liquid increases as the nanoparticle content and the temperature are increased,and the diameter of nanoparticle is decreased.Furthermore,the thermal conductivity ratio increases significantly by improving the stabilities of nanofluids,which is achieved by adding surfactants or performing the proper ammonia content in the fluid.展开更多
基金Project(2009ZX07315-002-01) supported by the Water Pollution Control and Management of Major Special Science and Technology, China Project(CDJXS11210001) supported by the Scientific and Technical Innovation Project of Chongqing University Graduation Foundation, China
文摘To enhance the nitrogen removal,a systemic monitoring of the biological and hydrological parameters of Carrousel oxidation ditch in Chongqing Jingkou Wastewater Treatment Plant was carried out to study the feasibility of simultaneous nitrification and denitrification(SND).The variation and distribution of parameters such as flow velocity,concentration of dissolved oxygen(DO) and mixed liquor suspended solids(MLSS) in oxidation ditch were monitored and analyzed,which were major control factors for SND.The results showed that,the dimensional distribution of flow velocity,DO and MLSS were affected significantly by the operation condition of the aeration wheels.With all the four aeration wheels being in operation,DO and flow velocity were higher and the mixing of MLSS was sufficient.With three aeration wheels being in operation,the flow velocity in most of the bottom areas was enough to meet the basic requirements of no deposition,and the anaerobic region and aerobic region could exist simultaneously in one oxidation ditch,which was helpful to the process of SND.According to spatial distribution characteristics of the flow velocity,DO and soluble components under optimized condition,different functional zones of biochemical reaction in the Carrousel oxidation ditch system were defined,which might contribute to the optimization control and SND of Carrousel oxidation ditch.
基金Project(2006-8) supported by the Huadian International Corporation Limited
文摘The cyclic oxidation behavior of Fe-9Cr-1Mo steel (9Cr-1Mo) in 10%H2O+90%Ar (volume fraction) atmosphere at 600, 650 and 700 ℃ for various time was studied. The oxidation mechanism of 9Cr-1Mo steel in 10%H2O+90%Ar atmosphere was discussed. The thermal stress was evaluated in two oxide layers to illustrate the spallation of the oxide layer. The experimental results indicate that there exists a duplex oxide scale with an outer layer of Fe2O3 and an inner layer of mixed (Fe, Cr)3O4 formed on 9Cr-1Mo steel during cyclic oxidation. Some cracks generated in both inner and outer oxide layers. Parts of oxide scales spalled from substrate during the cyclic oxidation. A higher tensile stress in the oxide layer is formed at the early oxidation stage than at the later oxidation stage during heating. This tensile stress results in the formation of cracks in the oxide layer.
基金Project(1212010071012) supported by Guangdong Pangxidong Mineral Prospect Investigation, ChinaProject(41004051) supported by the National Natural Science Foundation of ChinaProject ([2007]038-01-18) supported by Nationwide Mineral Resource Potential Evaluation Projects of Ministry of Land and Resources, China
文摘Distinguishing geochemical anomalies from background is a basic task in exploratory geochemistry. The derivation of geochemical anomalies from stream sediment geochemical data and the decomposition of these anomalies into their component patterns were described. A set of stream sediment geochemical data was obtained for 1 880 km 2 of the Pangxidong area, which is in the southern part of the recently recognized Qinzhou-Hangzhou joint tectonic belt. This belt crosses southern China and tends to the northwest (NE) direction. The total number of collected samples was 7 236, and the concentrations of Ag, Au, Cu, As, Pb and Zn were measured for each sample. The spatial combination distribution law of geochemical elements and principal component analysis (PCA) were used to construct combination models for the identification of combinations of geochemical anomalies. Spectrum-area (S-A) fractal modeling was used to strengthen weak anomalies and separate them from the background. Composite anomaly modeling was combined with fractal filtering techniques to process and analyze the geochemical data. The raster maps of Au, Ag, Cu, As, Pb and Zn were obtained by the multifractal inverse distance weighted (MIDW) method. PCA was used to combine the Au, Ag, Cu, As, Pb, and Zn concentration values. The S-A fractal method was used to decompose the first component pattern achieved by the PCA. The results show that combination anomalies from a combination of variables coincide with the known mineralization of the study area. Although the combination anomalies cannot reflect local anomalies closely enough, high-anomaly areas indicate good sites for further exploration for unknown deposits. On this basis, anomaly and background separation from combination anomalies using fractal filtering techniques can provide guidance for later work.
基金Project(41472241)supported by the National Natural Science Foundation of ChinaProject(KJXM2019028)supported by the Natural Resources Science and Technology Project of Jiangsu Province,ChinaProject(2019B17314)supported by the Fundamental Research Funds for the Central Universities,China。
文摘As a new kind of air-hardening soil reinforcement material,polymer is being widely applied in river-bank slope reinforcement and ecological slope protection area.Thus,more attention should be paid to study the characteristics of reinforced soil after immersion.In this study,water-induced changes in strength characteristics of sand reinforced with polymer and fibers were reported.Several factors,including polymer content(1%,2%,3%and 4%by weight of dry sand),immersion time(6,12,24 and 48 h),dry density(1.40,1.45,1.50,1.55 and 1.60 g/cm^(3),)and fiber content(0.2%,0.4%,0.6%and 0.8%by weight of dry sand)which may influence the strength characteristics of reinforced sand after immersion were analyzed.The microstructure of reinforced sand was analyzed with nuclear magnetic resonance(NMR)and scanning electron microscope(SEM).Experimental results indicate that the compressive strength increases with the increase of polymer content and decreases with the increase of immersion time;the softening coefficients decrease with the increase of the polymer content and immersion time and increase with an increment in density and fiber content.Fiber plays an active role in reducing water-induced loss of strength at 0.6%content.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
基金Project(BK2011618) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject(51108288) supported by the National Natural Science Foundation of China
文摘The improvement of question soils with cement shows great technical, economic and environmental advantages. And interest in introducing electrical resistivity measurement to assess the quality of cement treated soils has increased markedly recently due to its economical, non-destructive, and relatively non-invasive advantages. This work aims to quantify the effect of cement content (aw), porosity (nt), and curing time(T) on the electrical resistivity (p) and unconfined compression strength (UCS) of cement treated soil. A series of electrical resistivity tests and UCS tests of cement treated soil specimen after various curing periods were carried out. A modified Archie empirical law was proposed taking into account the effect of cement content and curing period on the electrical resistivity of cement treated soil. The results show that nt/(aw·T) and nt/(aw·T^1/2) ratio are appropriate parameters to assess electrical resistivity and UCS of cement treated soil, respectively. Finally, the relationship between UCS and electrical resistivity was also established.
基金Projects(51176029,50876020) supported by the National Natural Science Foundation of ChinaProject(2011BAJ03B00) supported by the 12th Five-Year National Science and Technology Support Key Program of China Project(ybjj1124) supported by the Foundation of Graduate School of Southeast University,China
文摘In order to investigate the mechanism of nanoparticles enhancing the heat and mass transfer of the ammonia-water absorption process,several types of binary nanofluids were prepared by mixing Al2O3 nanoparticles with polyacrylic acid(PAA),TiO2 with polyethylene glycol(PEG 1000),and TiN,SiC,hydroxyapatite(noodle-like) with PEG 10000 to ammonia-water solution,respectively.The thermal conductivities were measured by using a KD2 Pro thermal properties analyzer.The influences of surfactant and ammonia on the dispersion stabilities of the binary nanofluids were investigated by the light absorbency ratio index methods.The results show that the type,content and size of nanoparticles,the temperature as well as the dispersion stability are the key parameters that affect the thermal conductivity of nanofluids.For the given nanoparticle material and the base fluid,the thermal conductivity ratio of the nanofluid to the ammonia-water liquid increases as the nanoparticle content and the temperature are increased,and the diameter of nanoparticle is decreased.Furthermore,the thermal conductivity ratio increases significantly by improving the stabilities of nanofluids,which is achieved by adding surfactants or performing the proper ammonia content in the fluid.