The effectiveness of a magnetic ion exchange resin (MIEX) for the treatment of Hongze Lake water in China was evaluated, The kinetics of natural organic matter (NOM) removal at various MIEX doses and contact time,...The effectiveness of a magnetic ion exchange resin (MIEX) for the treatment of Hongze Lake water in China was evaluated, The kinetics of natural organic matter (NOM) removal at various MIEX doses and contact time, multiple-loading experiments, impacts of MIEX prior to coagulation on coagulant demands and the effectiveness of combination of MIEX, pre-chlorination and coagulation were investigated. Kinetic experimental results show that more than 80% UV254 and 67% dissolved organic carbon (DOC) from raw water can be removed by the use of MIEX alone. 94% sulfate, 69% nitrate and 98% bromide removals are obtained after the first use of MIEX in multiple-loading experiments. It is suggested that MIEX can be loaded up to 1 250 bed volume (BV, volume ratio of tested water to resin) or more without saturation when regarding organics removal as a target. MIEX can remove organics to a greater extend than coagulation and lower the coagulant demand when combining with coagulation. Chlorination experimental results show that MIEX can remove 57% chlorine demand and 77% trihalomethane formation potential (THMFP) for raw water. Pre-chlorination followed by MIEX and coagulation can give additional organic and THMFP removals. The results suggest that MIEX provides a new method to solve thc problem algae reproduction.展开更多
Swelling and shrinkage due to moisture-change is one of the characteristics of the expansive soil,which is similar to the behavior of most materials under thermal effect,If the deformation is restricted,stress in expa...Swelling and shrinkage due to moisture-change is one of the characteristics of the expansive soil,which is similar to the behavior of most materials under thermal effect,If the deformation is restricted,stress in expansive soil is caused by the swell-shrinking.The stress is defined as "moisture-change stress" and is adopted to analyze swell-shrinkage deformation based on the elasticity mechanics theory.The state when the total stress becomes equal to the soil tensile strength is considered as the cracking criterion as moisture-change increases.Then,the initial cracking mechanism due to evaporation is revealed as follows:Different rates of moisture loss at different depths result in greater shrinkage deformation on the surface while there is smaller shrinkage deformation at the underlayer in expansive soil;cracks will grow when the nonuniform shrinkage deformation increases to a certain degree.A theoretical model is established,which may be used to calculate the stress caused by moisture-change.The depth of initial cracks growing is predicted by the proposed model in expansive soil,A series of laboratory tests are carried out by exposing expansive soil samples with different moisture-changes.The process of crack propagation is investigated by resistivity method.The test results show good consistency with the predicted results by the proposed theoretical model.展开更多
Experimental design was applied in the optimization of crude oil adsorption from saline waste water using raw bagasse.The application of response surface methodology(RSM) was presented with temperature,salinity of wat...Experimental design was applied in the optimization of crude oil adsorption from saline waste water using raw bagasse.The application of response surface methodology(RSM) was presented with temperature,salinity of water,pH,adsorbent dose,and initial oil content as factors.A quadratic model could be used to approximate the mathematical relationship of crude oil removal on the five significant independent variables.Predicted values and experimental values are found to be in good agreement with R2 of 97.44%.The result of optimization shows that the maximum crude oil removal is equal to 67.38% under the optimal condition of temperature of 46.53 °C,salinity of 37.2 g/L,pH of 3,adsorbent dose of 9 g/L and initial oil content of 300×10-6.展开更多
基金Project(2008ZX07421-002) supported by the Key National Science and Technology Project of ChinaProject(50638020) supported by the National Natural Science Foundation of China
文摘The effectiveness of a magnetic ion exchange resin (MIEX) for the treatment of Hongze Lake water in China was evaluated, The kinetics of natural organic matter (NOM) removal at various MIEX doses and contact time, multiple-loading experiments, impacts of MIEX prior to coagulation on coagulant demands and the effectiveness of combination of MIEX, pre-chlorination and coagulation were investigated. Kinetic experimental results show that more than 80% UV254 and 67% dissolved organic carbon (DOC) from raw water can be removed by the use of MIEX alone. 94% sulfate, 69% nitrate and 98% bromide removals are obtained after the first use of MIEX in multiple-loading experiments. It is suggested that MIEX can be loaded up to 1 250 bed volume (BV, volume ratio of tested water to resin) or more without saturation when regarding organics removal as a target. MIEX can remove organics to a greater extend than coagulation and lower the coagulant demand when combining with coagulation. Chlorination experimental results show that MIEX can remove 57% chlorine demand and 77% trihalomethane formation potential (THMFP) for raw water. Pre-chlorination followed by MIEX and coagulation can give additional organic and THMFP removals. The results suggest that MIEX provides a new method to solve thc problem algae reproduction.
基金Project(2006BAB04A10) supported by the National Science and Technology Pillar Program during the 11th Five Year Plan of ChinaProject(51008117) supported by the National Natural Science Foundation of China
文摘Swelling and shrinkage due to moisture-change is one of the characteristics of the expansive soil,which is similar to the behavior of most materials under thermal effect,If the deformation is restricted,stress in expansive soil is caused by the swell-shrinking.The stress is defined as "moisture-change stress" and is adopted to analyze swell-shrinkage deformation based on the elasticity mechanics theory.The state when the total stress becomes equal to the soil tensile strength is considered as the cracking criterion as moisture-change increases.Then,the initial cracking mechanism due to evaporation is revealed as follows:Different rates of moisture loss at different depths result in greater shrinkage deformation on the surface while there is smaller shrinkage deformation at the underlayer in expansive soil;cracks will grow when the nonuniform shrinkage deformation increases to a certain degree.A theoretical model is established,which may be used to calculate the stress caused by moisture-change.The depth of initial cracks growing is predicted by the proposed model in expansive soil,A series of laboratory tests are carried out by exposing expansive soil samples with different moisture-changes.The process of crack propagation is investigated by resistivity method.The test results show good consistency with the predicted results by the proposed theoretical model.
文摘Experimental design was applied in the optimization of crude oil adsorption from saline waste water using raw bagasse.The application of response surface methodology(RSM) was presented with temperature,salinity of water,pH,adsorbent dose,and initial oil content as factors.A quadratic model could be used to approximate the mathematical relationship of crude oil removal on the five significant independent variables.Predicted values and experimental values are found to be in good agreement with R2 of 97.44%.The result of optimization shows that the maximum crude oil removal is equal to 67.38% under the optimal condition of temperature of 46.53 °C,salinity of 37.2 g/L,pH of 3,adsorbent dose of 9 g/L and initial oil content of 300×10-6.