The performance of a flotation circuit is largely the result of the operator's response to visual clues. This includes manipulation of the gas input and how it is distributed to cells in a bank. A new gas dispersi...The performance of a flotation circuit is largely the result of the operator's response to visual clues. This includes manipulation of the gas input and how it is distributed to cells in a bank. A new gas dispersion technology was presented which was conducted to perform characterization tests in Outokumpu 30 m3 and 50 m3 flotation cells installed at Thompson Vale's concentrator, and subsequent data analysis. The experimental program was designed to establish "as-found" baseline conditions for each cell of the two-parallel banks in the scavenger-cleaner and recleaner circuit, to select and characterize one typical cell in the two banks with either different frother concentrations or different air flow rates, and establish what variables can be manipulated in future characterization work. A three-parameter model was developed in order to link the bubble size and frother concentration. This relationship can be used to correlate gas dispersion change to improved metallurgical performance.展开更多
An analytical approach was presented for estimating the factor of safety(FS) for slope failure, with consideration of the impact of a confined aquifer. An upward-moving wetting front from the confined water was assume...An analytical approach was presented for estimating the factor of safety(FS) for slope failure, with consideration of the impact of a confined aquifer. An upward-moving wetting front from the confined water was assumed and the pore water pressure distribution was then estimated and used to obtain the analytical expression of FS. Then, the validation of the theoretical analysis was applied based on an actual case in Hong Kong. It is shown that the presence of a confined aquifer leads to a lower FS value, and the impact rate of hydrostatic pressure on FS increases as the confined water pressure increases, approaching to a maximum value determined by the ratio of water density to saturated soil density. It is also presented that the contribution of hydrostatic pressure and hydrodynamic pressure to the slope stability vary with the confined aquifer pressure.展开更多
基金Project(2012BAB14B05)supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China
文摘The performance of a flotation circuit is largely the result of the operator's response to visual clues. This includes manipulation of the gas input and how it is distributed to cells in a bank. A new gas dispersion technology was presented which was conducted to perform characterization tests in Outokumpu 30 m3 and 50 m3 flotation cells installed at Thompson Vale's concentrator, and subsequent data analysis. The experimental program was designed to establish "as-found" baseline conditions for each cell of the two-parallel banks in the scavenger-cleaner and recleaner circuit, to select and characterize one typical cell in the two banks with either different frother concentrations or different air flow rates, and establish what variables can be manipulated in future characterization work. A three-parameter model was developed in order to link the bubble size and frother concentration. This relationship can be used to correlate gas dispersion change to improved metallurgical performance.
基金Project(R5110012)supported by Special Foundation for Distinguished Young Scholars of Zhejiang Province,ChinaProject(2009C33117)supported by The General Program of Natural Science Foundation of Zhejiang Province,China
文摘An analytical approach was presented for estimating the factor of safety(FS) for slope failure, with consideration of the impact of a confined aquifer. An upward-moving wetting front from the confined water was assumed and the pore water pressure distribution was then estimated and used to obtain the analytical expression of FS. Then, the validation of the theoretical analysis was applied based on an actual case in Hong Kong. It is shown that the presence of a confined aquifer leads to a lower FS value, and the impact rate of hydrostatic pressure on FS increases as the confined water pressure increases, approaching to a maximum value determined by the ratio of water density to saturated soil density. It is also presented that the contribution of hydrostatic pressure and hydrodynamic pressure to the slope stability vary with the confined aquifer pressure.