The purpose of the present study is to establish a mixed lubrication model for the journal-thrust coupled microgroove bearings(also referred as coupled bearings)used for the ship shaftless rim-driven thrusters.During ...The purpose of the present study is to establish a mixed lubrication model for the journal-thrust coupled microgroove bearings(also referred as coupled bearings)used for the ship shaftless rim-driven thrusters.During the hydrodynamic modelling,the coupling hydrodynamic pressure between the journal bearing and the thrust bearing is considered.The mixed lubrication performances of the microgroove journal-thrust bearing with five different bottom shapes,including rectangle,semi-ellipse,right triangle,isosceles triangle and left triangle,are compared.Based on the numerical results,the optimal microgroove bottom shape of the journal bearing and tilting angle of the thrust pad are determined.Additionally,the comparative analysis shows that the coupled bearing with left triangle microgroove bottom shape exhibits the optimal mixed lubrication performance.The numerical result also indicates that the optimal inclination angle of the thrust bearing pad is 0.01°for the current simulation case.展开更多
An ejector of low NO~ burner was designed for a gas instantaneous water heater in this work. The flowing and mixing process of the ejector was investigated by computational fluid dynamics (CFD) approach. A comprehen...An ejector of low NO~ burner was designed for a gas instantaneous water heater in this work. The flowing and mixing process of the ejector was investigated by computational fluid dynamics (CFD) approach. A comprehensive study was conducted to understand the effects of the geometrical parameters on the static pressure of air and methane, and mole fraction uniformity of methane at the outlet of ejector. The distribution chamber was applied to balance the pressure and improve the mixing process of methane and air in front of the fire hole. A distribution orifice plate with seven distribution orifices was introduced at the outlet of the ejector to improve the flow organization. It is found that the nozzle exit position of 5 mm and nozzle diameter d 〉1.3 mm should be used to improve the flow organization and realize the well premixed combustion for this designed ejector.展开更多
基金Project(51975064)supported by the National Natural Science Foundation of ChinaProject(cstc2018jcyj AX0442)supported by the General Projects of Basic Science and Frontier Technology Research of Chongqing,China+2 种基金Projects(2018M631059,2019T120805)supported by the Postdoctoral Science Foundation of ChinaProject(cstc2017zdcyzdzx X0001)supported by the Major Research and Development Program of ChinaProject supported by the Innovation Program on the Common and Key Technologise of Key Industries,China。
文摘The purpose of the present study is to establish a mixed lubrication model for the journal-thrust coupled microgroove bearings(also referred as coupled bearings)used for the ship shaftless rim-driven thrusters.During the hydrodynamic modelling,the coupling hydrodynamic pressure between the journal bearing and the thrust bearing is considered.The mixed lubrication performances of the microgroove journal-thrust bearing with five different bottom shapes,including rectangle,semi-ellipse,right triangle,isosceles triangle and left triangle,are compared.Based on the numerical results,the optimal microgroove bottom shape of the journal bearing and tilting angle of the thrust pad are determined.Additionally,the comparative analysis shows that the coupled bearing with left triangle microgroove bottom shape exhibits the optimal mixed lubrication performance.The numerical result also indicates that the optimal inclination angle of the thrust bearing pad is 0.01°for the current simulation case.
基金Project(NR2013K04) supported by Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering,ChinaProject(20130909) supported by the Higher School Science and Technology Development Fund of Tianjin,China
文摘An ejector of low NO~ burner was designed for a gas instantaneous water heater in this work. The flowing and mixing process of the ejector was investigated by computational fluid dynamics (CFD) approach. A comprehensive study was conducted to understand the effects of the geometrical parameters on the static pressure of air and methane, and mole fraction uniformity of methane at the outlet of ejector. The distribution chamber was applied to balance the pressure and improve the mixing process of methane and air in front of the fire hole. A distribution orifice plate with seven distribution orifices was introduced at the outlet of the ejector to improve the flow organization. It is found that the nozzle exit position of 5 mm and nozzle diameter d 〉1.3 mm should be used to improve the flow organization and realize the well premixed combustion for this designed ejector.