The immense energy potential of natural water vapor cycles,encompassing evaporation,transport,and adsorption,remains substantially underexploited.Recent progress in nanomaterial science and an improved understanding o...The immense energy potential of natural water vapor cycles,encompassing evaporation,transport,and adsorption,remains substantially underexploited.Recent progress in nanomaterial science and an improved understanding of water-surface interactions have shown that because of quantum confinement effects and increased surface reactivity,nanoscale materials have exceptional electrical generation abilities through interfacial dynamics with aqueous phases.Hydrovoltaic technology has emerged as a novel energy conversion method that harnesses liquid-solid interfacial phenomena including surface slippage,frictional contact,evaporation dynamics,and moisture concentration gradients to produce electrical outputs.This review summarizes advances in graphene-based carbon materials for hydrovoltaic applications,addressing four critical aspects:(1)fundamental characteristics of graphene-water interfaces,(2)interfacial charge generation mechanisms at liquid-solid boundaries,(3)three principal electricity generation modes(flow-induced,evaporation-driven,and moisture gradient-enabled power generation),and(4)practical implementation scenarios.We also propose ways to improve the energy conversion efficiency and scale-up of the current technology for its use in self-powered systems,flexible energy storage batteries,humidity sensors,and personal thermal management devices.展开更多
文摘The immense energy potential of natural water vapor cycles,encompassing evaporation,transport,and adsorption,remains substantially underexploited.Recent progress in nanomaterial science and an improved understanding of water-surface interactions have shown that because of quantum confinement effects and increased surface reactivity,nanoscale materials have exceptional electrical generation abilities through interfacial dynamics with aqueous phases.Hydrovoltaic technology has emerged as a novel energy conversion method that harnesses liquid-solid interfacial phenomena including surface slippage,frictional contact,evaporation dynamics,and moisture concentration gradients to produce electrical outputs.This review summarizes advances in graphene-based carbon materials for hydrovoltaic applications,addressing four critical aspects:(1)fundamental characteristics of graphene-water interfaces,(2)interfacial charge generation mechanisms at liquid-solid boundaries,(3)three principal electricity generation modes(flow-induced,evaporation-driven,and moisture gradient-enabled power generation),and(4)practical implementation scenarios.We also propose ways to improve the energy conversion efficiency and scale-up of the current technology for its use in self-powered systems,flexible energy storage batteries,humidity sensors,and personal thermal management devices.