期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于被动声呐音频信号的水中目标识别综述
被引量:
10
1
作者
徐齐胜
许可乐
+4 位作者
窦勇
高彩丽
乔鹏
冯大为
朱博青
《自动化学报》
EI
CAS
CSCD
北大核心
2024年第4期649-673,共25页
基于被动声呐音频信号的水中目标识别是当前水下无人探测领域的重要技术难题,在军事和民用领域都应用广泛.本文从数据处理和识别方法两个层面系统阐述基于被动声呐信号进行水中目标识别的方法和流程.在数据处理方面,从基于被动声呐信号...
基于被动声呐音频信号的水中目标识别是当前水下无人探测领域的重要技术难题,在军事和民用领域都应用广泛.本文从数据处理和识别方法两个层面系统阐述基于被动声呐信号进行水中目标识别的方法和流程.在数据处理方面,从基于被动声呐信号的水中目标识别基本流程、被动声呐音频信号分析的数理基础及其特征提取三个方面概述被动声呐信号处理的基本原理.在识别方法层面,全面分析基于机器学习算法的水中目标识别方法,并聚焦以深度学习算法为核心的水中目标识别研究.本文从有监督学习、无监督学习、自监督学习等多种学习范式对当前研究进展进行系统性的总结分析,并从算法的标签数据需求、鲁棒性、可扩展性与适应性等多个维度分析这些方法的优缺点.同时,还总结该领域中较为广泛使用的公开数据集,并分析公开数据集应具备的基本要素.最后,通过对水中目标识别过程的论述,总结目前基于被动声呐音频信号的水中目标自动识别算法存在的困难与挑战,并对该领域未来的发展方向进行展望.
展开更多
关键词
被动声呐信号
水中目标自动识别
深度学习
有监督学习
自监督学习
在线阅读
下载PDF
职称材料
题名
基于被动声呐音频信号的水中目标识别综述
被引量:
10
1
作者
徐齐胜
许可乐
窦勇
高彩丽
乔鹏
冯大为
朱博青
机构
国防科技大学计算机学院
并行与分布处理国防科技重点实验室
出处
《自动化学报》
EI
CAS
CSCD
北大核心
2024年第4期649-673,共25页
文摘
基于被动声呐音频信号的水中目标识别是当前水下无人探测领域的重要技术难题,在军事和民用领域都应用广泛.本文从数据处理和识别方法两个层面系统阐述基于被动声呐信号进行水中目标识别的方法和流程.在数据处理方面,从基于被动声呐信号的水中目标识别基本流程、被动声呐音频信号分析的数理基础及其特征提取三个方面概述被动声呐信号处理的基本原理.在识别方法层面,全面分析基于机器学习算法的水中目标识别方法,并聚焦以深度学习算法为核心的水中目标识别研究.本文从有监督学习、无监督学习、自监督学习等多种学习范式对当前研究进展进行系统性的总结分析,并从算法的标签数据需求、鲁棒性、可扩展性与适应性等多个维度分析这些方法的优缺点.同时,还总结该领域中较为广泛使用的公开数据集,并分析公开数据集应具备的基本要素.最后,通过对水中目标识别过程的论述,总结目前基于被动声呐音频信号的水中目标自动识别算法存在的困难与挑战,并对该领域未来的发展方向进行展望.
关键词
被动声呐信号
水中目标自动识别
深度学习
有监督学习
自监督学习
Keywords
Passive sonar signal
automatic underwater target recognition
deep learning
supervised learning
self-supervised learning
分类号
E91 [军事]
U666.7 [交通运输工程—船舶及航道工程]
TP18 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于被动声呐音频信号的水中目标识别综述
徐齐胜
许可乐
窦勇
高彩丽
乔鹏
冯大为
朱博青
《自动化学报》
EI
CAS
CSCD
北大核心
2024
10
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部