针对锂介导合成氨(LM-NRR)过程中存在的水污染问题,通过对比实验及扫描电子显微镜(SEM)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)等表征手段,探讨了含水量对LM-NRR体系的性能影响及其在反应界面中的作用机理。结果表明,无水条件下的L...针对锂介导合成氨(LM-NRR)过程中存在的水污染问题,通过对比实验及扫描电子显微镜(SEM)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)等表征手段,探讨了含水量对LM-NRR体系的性能影响及其在反应界面中的作用机理。结果表明,无水条件下的LM-NRR体系具有较好的氨合成性能,在反应时间为120 min、N2流速为4 m L·min^(-1)、电流密度为3 m A·cm^(-2)条件下的氨合成速率可达0.0124μg·s^(-1)·cm^(-2),法拉第效率为7.05%。含水量对LM-NRR体系的影响显著,会极大地降低体系的氨合成速率及法拉第效率。这主要是由于反应界面上的水会加剧竞争性析氢反应(HER)、促进电解质中Li BF_(4)的水解以及钝化表面活性锂位点,进而降低了体系的氨反应活性。展开更多
A red-blood-cell-like nitrogen-doped porous carbon catalyst with a high nitrogen content(9.81%)and specific surface area(631.46 m^2/g)was prepared by using melamine cyanuric acid and glucose as sacrificial template an...A red-blood-cell-like nitrogen-doped porous carbon catalyst with a high nitrogen content(9.81%)and specific surface area(631.46 m^2/g)was prepared by using melamine cyanuric acid and glucose as sacrificial template and carbon source,respectively.This catalyst has a comparable onset potential and a higher diffusion-limiting current density than the commercial 20 wt%Pt/C catalyst in alkaline electrolyte.The oxygen reduction reaction mechanism catalyzed by this catalyst is mainly through a 4e pathway process.The excellent catalytic activity could origin from the synergistic effect of the in-situ doped nitrogen(up to 9.81%)and three-dimensional(3D)porous network structure with high specific surface area,which is conducive to the exposure of more active sites.It is interesting to note that the catalytic activity of oxygen reduction strongly depends on the proportion of graphic N rather than the total N content.展开更多
Oxygen reduction reaction(ORR)plays a crucial role in many energy storage and conversion devices.Currently,the development of inexpensive and high-performance carbon-based non-precious-metal ORR catalysts in alkaline ...Oxygen reduction reaction(ORR)plays a crucial role in many energy storage and conversion devices.Currently,the development of inexpensive and high-performance carbon-based non-precious-metal ORR catalysts in alkaline media still gains a wide attention.In this paper,the mesoporous Fe-N/C catalysts were synthesized through SiO2-mediated templating method using biomass soybeans as the nitrogen and carbon sources.The SiO2 templates create a simultaneous optimization of both the surface functionalities and porous structures of Fe-N/C catalysts.Detailed investigations indicate that the Fe-N/C3 catalyst prepared with the mass ratio of SiO2 to soybean being 3:4 exhibits brilliant electrocatalytic performance,excellent long-term stability and methanol tolerance for the ORR,with the onset potential and the half-wave potential of the ORR being about 0.890 V and 0.783 V(vs RHE),respectively.Meanwhile,the desired 4-electron transfer pathway of the ORR on the catalysts can be observed.It is significantly proposed that the high BET specific surface area and the appropriate pore-size,as well as the high pyridinic-N and total nitrogen loadings may play key roles in enhancing the ORR performance for the Fe-N/C3 catalyst.These results suggest a feasible route based on the economical and sustainable soybean biomass to develop inexpensive and highly efficient non-precious metal electrochemical catalysts for the ORR.展开更多
文摘针对锂介导合成氨(LM-NRR)过程中存在的水污染问题,通过对比实验及扫描电子显微镜(SEM)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)等表征手段,探讨了含水量对LM-NRR体系的性能影响及其在反应界面中的作用机理。结果表明,无水条件下的LM-NRR体系具有较好的氨合成性能,在反应时间为120 min、N2流速为4 m L·min^(-1)、电流密度为3 m A·cm^(-2)条件下的氨合成速率可达0.0124μg·s^(-1)·cm^(-2),法拉第效率为7.05%。含水量对LM-NRR体系的影响显著,会极大地降低体系的氨合成速率及法拉第效率。这主要是由于反应界面上的水会加剧竞争性析氢反应(HER)、促进电解质中Li BF_(4)的水解以及钝化表面活性锂位点,进而降低了体系的氨反应活性。
基金Projects(21571189,21771062)supported by the National Natural Science Foundation of ChinaProjects(2016TP1007,2017TP1001)supported by the Hunan Provincial Science and Technology Plan,China+1 种基金Project(150110005)supported by the Fundamental Research and Innovation Project for Postgraduate of Hunan Province,ChinaProjects(2016CL04,2017CL17)supported by the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province,China
文摘A red-blood-cell-like nitrogen-doped porous carbon catalyst with a high nitrogen content(9.81%)and specific surface area(631.46 m^2/g)was prepared by using melamine cyanuric acid and glucose as sacrificial template and carbon source,respectively.This catalyst has a comparable onset potential and a higher diffusion-limiting current density than the commercial 20 wt%Pt/C catalyst in alkaline electrolyte.The oxygen reduction reaction mechanism catalyzed by this catalyst is mainly through a 4e pathway process.The excellent catalytic activity could origin from the synergistic effect of the in-situ doped nitrogen(up to 9.81%)and three-dimensional(3D)porous network structure with high specific surface area,which is conducive to the exposure of more active sites.It is interesting to note that the catalytic activity of oxygen reduction strongly depends on the proportion of graphic N rather than the total N content.
基金Project(21406273)supported by the National Natural Science Foundation of China
文摘Oxygen reduction reaction(ORR)plays a crucial role in many energy storage and conversion devices.Currently,the development of inexpensive and high-performance carbon-based non-precious-metal ORR catalysts in alkaline media still gains a wide attention.In this paper,the mesoporous Fe-N/C catalysts were synthesized through SiO2-mediated templating method using biomass soybeans as the nitrogen and carbon sources.The SiO2 templates create a simultaneous optimization of both the surface functionalities and porous structures of Fe-N/C catalysts.Detailed investigations indicate that the Fe-N/C3 catalyst prepared with the mass ratio of SiO2 to soybean being 3:4 exhibits brilliant electrocatalytic performance,excellent long-term stability and methanol tolerance for the ORR,with the onset potential and the half-wave potential of the ORR being about 0.890 V and 0.783 V(vs RHE),respectively.Meanwhile,the desired 4-electron transfer pathway of the ORR on the catalysts can be observed.It is significantly proposed that the high BET specific surface area and the appropriate pore-size,as well as the high pyridinic-N and total nitrogen loadings may play key roles in enhancing the ORR performance for the Fe-N/C3 catalyst.These results suggest a feasible route based on the economical and sustainable soybean biomass to develop inexpensive and highly efficient non-precious metal electrochemical catalysts for the ORR.