Carbon materials with adjustable porosity,controllable het-eroatom doping and low-cost have been received considerable attention as supercapacitor electrodes.However,using carbon materials with abundant micropores,a h...Carbon materials with adjustable porosity,controllable het-eroatom doping and low-cost have been received considerable attention as supercapacitor electrodes.However,using carbon materials with abundant micropores,a high surface area and a high-dopant content for an aqueous su-percapacitor with a high energy output still remains a challenge.We report the easy synthesis of interconnected carbon spheres by a polymerization re-action between p-benzaldehyde and 2,6-diaminopyridine.The synthesis in-volves adjusting the mass ratio of the copolymer and KOH activator to achieve increased charge storage ability and high energy output,which are attributed to the high ion-accessible area provided by the large number of micropores,high N/O contents and rapid ion diffusion channels in the porous structure.At a PMEC∶KOH mass ratio of 1∶1,the high electrolyte ion-adsorption area(2599.76 m^(2) g^(−1))and the N/O dopant atoms of the conductive framework of a typical carbon electrode produce a superior specific capacity(303.2 F g^(−1)@0.5 A g^(−1))giving an assembled symmetric capacitor a high energy delivery of 11.3 Wh kg^(−1)@250 W kg^(−1).This study presents a simple strategy for synthesizing microporous carbon and highlights its potential use in KOH-based supercapacitors.展开更多
Carbon with its high electrical conductivity,excellent chemical stability,and structure ability is the most promising an-ode material for sodium and potassium ion batteries.We developed a defect-rich porous carbon fra...Carbon with its high electrical conductivity,excellent chemical stability,and structure ability is the most promising an-ode material for sodium and potassium ion batteries.We developed a defect-rich porous carbon framework(DRPCF)built with N/O-co-doped mesoporous nanosheets and containing many defects using porous g-C_(3)N_(4)(PCN)and dopamine(DA)as raw materials.We prepared samples with PCN/DA mass ratios of 1/1,2/1 and 3/1 and found that the one with a mass ratio of 2/1 and a carbonization temperature of 700℃ in an Ar atmosphere(DRPCF-2/1-700),had a large specific surface area with an enormous pore volume and a large number of N/O heteroatom active defect sites.Because of this,it had the best pseudocapacitive sodium and potassium ion stor-age performance.A half battery of Na//DRPCF-2/1-700 maintained a capacity of 328.2 mAh g^(-1) after being cycled at 1 A g^(-1) for 900 cycles,and a half battery of K//DRPC-2/1-700 maintained a capacity of 321.5 mAh g^(-1) after being cycled at 1 A g^(-1) for 1200 cycles.The rate capability and cycling stability achieved by DRPCF-2/1-700 outperforms most reported carbon materials.Finally,ex-situ Raman spectroscopy analysis result confirms that the filling and removing of K^(+)and Na^(+)from the electrochemically active defects are responsible for the high capacity,superior rate and cycling performance of the DRPCF-2/1-700 sample.展开更多
基金financially supported by University-level key projects of Anhui University of Science and Technology(QNZD2021-04,QNZD2021-07)Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(2021yjrc22,13210572)+2 种基金Huainan Science and Technology Bureau Plan Project(2023A3111)Open Research Fund Program of Engineering Technology Research Center of Coal Resources Comprehensive Utilization(MTYJZX202204)Natural Science Research Project of Anhui Educational Committee(2023AH051184,2023AH051210)。
文摘Carbon materials with adjustable porosity,controllable het-eroatom doping and low-cost have been received considerable attention as supercapacitor electrodes.However,using carbon materials with abundant micropores,a high surface area and a high-dopant content for an aqueous su-percapacitor with a high energy output still remains a challenge.We report the easy synthesis of interconnected carbon spheres by a polymerization re-action between p-benzaldehyde and 2,6-diaminopyridine.The synthesis in-volves adjusting the mass ratio of the copolymer and KOH activator to achieve increased charge storage ability and high energy output,which are attributed to the high ion-accessible area provided by the large number of micropores,high N/O contents and rapid ion diffusion channels in the porous structure.At a PMEC∶KOH mass ratio of 1∶1,the high electrolyte ion-adsorption area(2599.76 m^(2) g^(−1))and the N/O dopant atoms of the conductive framework of a typical carbon electrode produce a superior specific capacity(303.2 F g^(−1)@0.5 A g^(−1))giving an assembled symmetric capacitor a high energy delivery of 11.3 Wh kg^(−1)@250 W kg^(−1).This study presents a simple strategy for synthesizing microporous carbon and highlights its potential use in KOH-based supercapacitors.
文摘Carbon with its high electrical conductivity,excellent chemical stability,and structure ability is the most promising an-ode material for sodium and potassium ion batteries.We developed a defect-rich porous carbon framework(DRPCF)built with N/O-co-doped mesoporous nanosheets and containing many defects using porous g-C_(3)N_(4)(PCN)and dopamine(DA)as raw materials.We prepared samples with PCN/DA mass ratios of 1/1,2/1 and 3/1 and found that the one with a mass ratio of 2/1 and a carbonization temperature of 700℃ in an Ar atmosphere(DRPCF-2/1-700),had a large specific surface area with an enormous pore volume and a large number of N/O heteroatom active defect sites.Because of this,it had the best pseudocapacitive sodium and potassium ion stor-age performance.A half battery of Na//DRPCF-2/1-700 maintained a capacity of 328.2 mAh g^(-1) after being cycled at 1 A g^(-1) for 900 cycles,and a half battery of K//DRPC-2/1-700 maintained a capacity of 321.5 mAh g^(-1) after being cycled at 1 A g^(-1) for 1200 cycles.The rate capability and cycling stability achieved by DRPCF-2/1-700 outperforms most reported carbon materials.Finally,ex-situ Raman spectroscopy analysis result confirms that the filling and removing of K^(+)and Na^(+)from the electrochemically active defects are responsible for the high capacity,superior rate and cycling performance of the DRPCF-2/1-700 sample.