In view of the difference in coordination capacity of the glycine ion(Gly−),a selective leaching process for treating with spent lithium-ion batteries(LIBs)in the alkaline glycinate system was proposed.The effects of ...In view of the difference in coordination capacity of the glycine ion(Gly−),a selective leaching process for treating with spent lithium-ion batteries(LIBs)in the alkaline glycinate system was proposed.The effects of retention time,leaching temperature,concentration of glycine ligand,liquid-solid ratio(L/S),pH,stirring speed,and H_(2)O_(2) dosage on the leaching efficiency of valuable metals and the dissolution of impurities were investigated.When the spent LIBs were leached in 3 mol/L glycine aqueous solution with pH of 8,L/S of 5 mL:1 g and H_(2)O_(2) dosage of 5 vol.%at 90℃and stirring speed of 400 r/min for 3 h,lithium,cobalt,nickel,and manganese recoveries were 96.31%,83.18%,91.56%,and 31.16%,respectively,but Ca,Al,Fe,and Cu were almost insoluble.Meanwhile,the kinetic study showed that the activation energies for the leaching of Li,Co,Ni,and Mn were all in the range of 45−61 kJ/mol.The results indicate that the leaching process is all controlled by chemical reactions.展开更多
Zinc extraction from crude zinc oxide(CZO)is beneficial to the full utilization of secondary resources and environmental protection.In this paper,a systematic investigation was carried out to study the leaching behavi...Zinc extraction from crude zinc oxide(CZO)is beneficial to the full utilization of secondary resources and environmental protection.In this paper,a systematic investigation was carried out to study the leaching behavior of CZO by using ammonia-ammonium carbonate solution.It was found that the maximum leaching rate of zinc from CZO dust was 95.7%under the conditions of[Zn]T:[NH 3]T:[CO_(3)^(2−)]=1:7.00:1.75,liquid to solid ratio 5:1,leaching temperature 30℃ and leaching time 60 min.Compared with pure zinc oxide(PZO)leaching,the CZO leaching required longer time and more leaching agents,which is caused by the Cd^(2+),Pb^(2+) and other metal cationic impurities in CZO.The metal cationic impurities dissolved in the leaching solution and combined with ammonium to form complexes,consuming leaching agents and affecting zinc leaching.展开更多
Nickel and cobalt were extracted from low-grade nickeliferous laterite ore using a reduction roasting-ammonia leaching method.The reduction roasting-ammonia leaching experimental tests were chiefly introduced,by which...Nickel and cobalt were extracted from low-grade nickeliferous laterite ore using a reduction roasting-ammonia leaching method.The reduction roasting-ammonia leaching experimental tests were chiefly introduced,by which fine coal was used as a reductant.The results show that the optimum process conditions are confirmed as follows:in reduction roasting process,the mass fraction of reductant in the ore is 10%,roasting time is 120 min,roasting temperature is 1 023-1 073 K;in ammonia leaching process,the liquid-to-solid ratio is 4:1(mL/g),leaching temperature is 313 K,leaching time is 120 min,and concentration ratio of NH3 to CO2 is 90 g/L:60 g/L.Under the optimum conditions,leaching efficiencies of nickel and cobalt are 86.25% and 60.84%,respectively.Therefore,nickel and cobalt can be effectively reclaimed,and the leaching agent can be also recycled at room temperature and normal pressure.展开更多
基金Projects(51974137,52274299)supported by the National Natural Science Foundation of ChinaProject(2023M733190)supported by the China Postdoctoral Science Foundation。
文摘In view of the difference in coordination capacity of the glycine ion(Gly−),a selective leaching process for treating with spent lithium-ion batteries(LIBs)in the alkaline glycinate system was proposed.The effects of retention time,leaching temperature,concentration of glycine ligand,liquid-solid ratio(L/S),pH,stirring speed,and H_(2)O_(2) dosage on the leaching efficiency of valuable metals and the dissolution of impurities were investigated.When the spent LIBs were leached in 3 mol/L glycine aqueous solution with pH of 8,L/S of 5 mL:1 g and H_(2)O_(2) dosage of 5 vol.%at 90℃and stirring speed of 400 r/min for 3 h,lithium,cobalt,nickel,and manganese recoveries were 96.31%,83.18%,91.56%,and 31.16%,respectively,but Ca,Al,Fe,and Cu were almost insoluble.Meanwhile,the kinetic study showed that the activation energies for the leaching of Li,Co,Ni,and Mn were all in the range of 45−61 kJ/mol.The results indicate that the leaching process is all controlled by chemical reactions.
基金Project(2020YFC1909805)supported by the National Key Research and Development Program of ChinaProjects(51504293,51574284)supported by the National Natural Science Foundation of China+2 种基金Project(2018-GX-A7)supported by Qinghai Provincial Major Scientific and Technological Special Project of ChinaProject(2020SK2125)supported by the Key Research and Development Program of Hunan Province,ChinaProject(CSUZC202129)supported by Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,China。
文摘Zinc extraction from crude zinc oxide(CZO)is beneficial to the full utilization of secondary resources and environmental protection.In this paper,a systematic investigation was carried out to study the leaching behavior of CZO by using ammonia-ammonium carbonate solution.It was found that the maximum leaching rate of zinc from CZO dust was 95.7%under the conditions of[Zn]T:[NH 3]T:[CO_(3)^(2−)]=1:7.00:1.75,liquid to solid ratio 5:1,leaching temperature 30℃ and leaching time 60 min.Compared with pure zinc oxide(PZO)leaching,the CZO leaching required longer time and more leaching agents,which is caused by the Cd^(2+),Pb^(2+) and other metal cationic impurities in CZO.The metal cationic impurities dissolved in the leaching solution and combined with ammonium to form complexes,consuming leaching agents and affecting zinc leaching.
基金Project(50674014) supported by the National Natural Science Foundation of China
文摘Nickel and cobalt were extracted from low-grade nickeliferous laterite ore using a reduction roasting-ammonia leaching method.The reduction roasting-ammonia leaching experimental tests were chiefly introduced,by which fine coal was used as a reductant.The results show that the optimum process conditions are confirmed as follows:in reduction roasting process,the mass fraction of reductant in the ore is 10%,roasting time is 120 min,roasting temperature is 1 023-1 073 K;in ammonia leaching process,the liquid-to-solid ratio is 4:1(mL/g),leaching temperature is 313 K,leaching time is 120 min,and concentration ratio of NH3 to CO2 is 90 g/L:60 g/L.Under the optimum conditions,leaching efficiencies of nickel and cobalt are 86.25% and 60.84%,respectively.Therefore,nickel and cobalt can be effectively reclaimed,and the leaching agent can be also recycled at room temperature and normal pressure.