构建低成本、高性能的非贵金属催化剂对促进燃料电池的发展具有重要意义。本研究通过静电纺丝技术和溶剂热反应法,在纳米纤维上负载Co(OH)_(2)纳米片,并以之为硬模板转化为ZIF-67纳米片,接着采用高温热处理法,获得氮掺杂碳纳米纤维(NCNF...构建低成本、高性能的非贵金属催化剂对促进燃料电池的发展具有重要意义。本研究通过静电纺丝技术和溶剂热反应法,在纳米纤维上负载Co(OH)_(2)纳米片,并以之为硬模板转化为ZIF-67纳米片,接着采用高温热处理法,获得氮掺杂碳纳米纤维(NCNF)负载Co-N-C纳米片(Co-NS)的非贵金属催化剂。基于高导电的NCNF、丰富的Co-N-C活性物种和纳米片阵列结构优势,NCNF/Co-NS催化剂具有极好的氧还原(ORR)动力学。测试结果表明,在0.1 mol/L KOH溶液中,NCNF/Co-NS催化剂的起始电位和半波电位分别为0.9 V vs.RHE和0.83 V vs.RHE,可与Pt/C(0.92 V vs.RHE,0.85 V vs.RHE)媲美,并表现出远高于Pt/C的电化学稳定性和耐甲醇性能,使其在能源领域具有广阔的应用前景。展开更多
碳纤维用做溶氧型海水电池(DO-SWB,Dissolved Oxygen-Seawater Battery)正极材料已取得商业化应用,但海水中溶解氧浓度低和材料氧还原反应(ORR,oxygen reduction reaction)活性低制约着电池功率密度的提高,炭材料的氮掺杂近年来备受关...碳纤维用做溶氧型海水电池(DO-SWB,Dissolved Oxygen-Seawater Battery)正极材料已取得商业化应用,但海水中溶解氧浓度低和材料氧还原反应(ORR,oxygen reduction reaction)活性低制约着电池功率密度的提高,炭材料的氮掺杂近年来备受关注。本工作以苯胺为氮源,采用一步法在苯胺(An,Aniline)和硫酸混合液中对聚丙烯腈碳纤维(PAN-CF,Polyacrylonitrile-based Carbon Fiber)进行电化学处理,调控工艺条件制备掺氮电极。采用扫描电镜(SEM,Scanning Electron Microscope)、拉曼光谱(Raman,Raman spectrum)和X射线光电子能谱(XPS,Xray Photoelectron Spectroscope)进行表征,结合电化学测试方法对电极表面特征及ORR活性评价,并对作用机理分析。电化学改性使碳纤维表面产生缺陷并生成吡啶类官能团,有效调控了炭材料的电子结构,增加了电极表面活性位点的数量,改善了氧的吸附和电荷转移能力,使掺氮后电极具有优良的ORR性能。其中,最佳性能电极ORR起始电位为-0.12 V vs SCE,在-0.4 V vs SCE下比电流密度达510 mA/g,作为溶氧型海水电池正极具有可期的应用前景。展开更多
文摘构建低成本、高性能的非贵金属催化剂对促进燃料电池的发展具有重要意义。本研究通过静电纺丝技术和溶剂热反应法,在纳米纤维上负载Co(OH)_(2)纳米片,并以之为硬模板转化为ZIF-67纳米片,接着采用高温热处理法,获得氮掺杂碳纳米纤维(NCNF)负载Co-N-C纳米片(Co-NS)的非贵金属催化剂。基于高导电的NCNF、丰富的Co-N-C活性物种和纳米片阵列结构优势,NCNF/Co-NS催化剂具有极好的氧还原(ORR)动力学。测试结果表明,在0.1 mol/L KOH溶液中,NCNF/Co-NS催化剂的起始电位和半波电位分别为0.9 V vs.RHE和0.83 V vs.RHE,可与Pt/C(0.92 V vs.RHE,0.85 V vs.RHE)媲美,并表现出远高于Pt/C的电化学稳定性和耐甲醇性能,使其在能源领域具有广阔的应用前景。
文摘碳纤维用做溶氧型海水电池(DO-SWB,Dissolved Oxygen-Seawater Battery)正极材料已取得商业化应用,但海水中溶解氧浓度低和材料氧还原反应(ORR,oxygen reduction reaction)活性低制约着电池功率密度的提高,炭材料的氮掺杂近年来备受关注。本工作以苯胺为氮源,采用一步法在苯胺(An,Aniline)和硫酸混合液中对聚丙烯腈碳纤维(PAN-CF,Polyacrylonitrile-based Carbon Fiber)进行电化学处理,调控工艺条件制备掺氮电极。采用扫描电镜(SEM,Scanning Electron Microscope)、拉曼光谱(Raman,Raman spectrum)和X射线光电子能谱(XPS,Xray Photoelectron Spectroscope)进行表征,结合电化学测试方法对电极表面特征及ORR活性评价,并对作用机理分析。电化学改性使碳纤维表面产生缺陷并生成吡啶类官能团,有效调控了炭材料的电子结构,增加了电极表面活性位点的数量,改善了氧的吸附和电荷转移能力,使掺氮后电极具有优良的ORR性能。其中,最佳性能电极ORR起始电位为-0.12 V vs SCE,在-0.4 V vs SCE下比电流密度达510 mA/g,作为溶氧型海水电池正极具有可期的应用前景。
文摘在燃料电池中,碳基氧还原反应(ORR)催化剂被认为是昂贵的铂基催化剂的潜在替代品。近年来,由过渡金属和氮原子共掺杂的碳基材料(M-N-C)以其低成本和优异的活性而受到研究人员的广泛关注。在此,通过精心设计的杨桃状MOF (ZIF-8@ZIF-67)为前驱体,采用简单的一步热解法制备钴、氮共掺杂多孔炭材料(命名为Co-N@CNT-C800)。CoN@CNT-C800产生了大量碳纳米管(CNT),独特的三维结构保证了较高的比表面积和孔隙率,有利于ORR的传质和电子传递。同时,Co-N@CNT-C800在碱性介质中表现出优异的半波电位和极限电流密度,分别为0.841 V和5.07 m A·cm^(-2)。此外,与商用Pt/C材料相比,Co-N@CNT-C800还表现出优异的电化学稳定性和耐甲醇毒性。该策略为制备低成本、高活性的能量转换电催化剂提供了一种有效的方法。