期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Numerical study on flow characteristics of large copper smelting bottom-blown furnace under strong and weak coupling oxygen supply
1
作者 JIANG Bao-cheng GUO Xue-yi +1 位作者 WANG Song-song WANG Qin-meng 《Journal of Central South University》 2025年第2期363-375,共13页
The melt stirring in a large copper smelting oxygen bottom-blown furnace is caused by the large amount of gas movement blown in by two rows of oxygen lances.At present,the two rows of oxygen lances provide oxygen of e... The melt stirring in a large copper smelting oxygen bottom-blown furnace is caused by the large amount of gas movement blown in by two rows of oxygen lances.At present,the two rows of oxygen lances provide oxygen of equal strength,and the stirring in the central area of the melt is insufficient,which restricts the efficient progress of the smelting reaction.This study proposes a strong-weak coupling oxygen supply method and establishes an equivalent model based on a large bottom-blown furnace(LBBF)of an enterprise to simulate the bubble characteristics and flow characteristics of the molten pool.The results show that adjusting the flow ratio between the two rows of oxygen lances can create a“strong”and a“weak”coexisting source of disturbance in an LBBF.It is worth noting that when the flow rate ratio of the two rows of oxygen lances is 1.6,the peak velocity generated by the“strong”distur bance source in the molten pool increases by 18.92%,and the disturbance range increases.This method effectively strengthens the stirring in the central area of the molten pool,improves smelting efficiency,and does not produce harmful melt splashes.It provides important guidance for optimizing production practice. 展开更多
关键词 large bottom-blown furnace oxygen supply flow characteristics initial bubbles
在线阅读 下载PDF
基于PFC3D的煤堆自燃过程模拟与实现 被引量:4
2
作者 崔铁军 马云东 王来贵 《安全与环境学报》 CAS CSCD 北大核心 2016年第2期94-98,共5页
为了解煤堆自燃过程中的温度场变化、能量迁移和氧气流动情况,基于煤堆的颗粒特性以PFC3D为模拟平台,借助其热力耦合模型,模拟了煤堆的自燃氧化过程,及该过程中的温度场变化和能量迁移;使用极小颗粒模拟氧气的流动及其与煤的反应,并通过... 为了解煤堆自燃过程中的温度场变化、能量迁移和氧气流动情况,基于煤堆的颗粒特性以PFC3D为模拟平台,借助其热力耦合模型,模拟了煤堆的自燃氧化过程,及该过程中的温度场变化和能量迁移;使用极小颗粒模拟氧气的流动及其与煤的反应,并通过FISH实现该过程。结果表明:随模拟时间延长,温度场高温区向煤堆坡面边界水平移动;能量迁移主要发生在靠近低温区的区域,且不同温区交界处迁移最多;高温区移动是由于氧化需氧量的变化、造成对氧的"抽吸"作用而产生的;煤堆内氧颗粒的流动可分为稳定区、杂乱区、微弱区,随着"抽吸"作用的增加,稳定区减小,杂乱区增加,微弱区增加。模拟计算至70 d,煤堆出现大范围高温区域并产生自燃,此时最高温度为362.1 K。 展开更多
关键词 安全工程 煤堆自燃 温场变化 能量迁移 氧气流动 PFC3D模拟
在线阅读 下载PDF
pH variation mechanism of high sulfur-containing bauxite 被引量:2
3
作者 陈兴华 胡岳华 +2 位作者 李旺兴 陈湘清 曹学锋 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期2909-2913,共5页
In order to fundamentally solve the acidification problem of high sulfur-containing bauxite during storage, by simulating the environment of minerals storage in laboratory, the acidification mechanism and influencing ... In order to fundamentally solve the acidification problem of high sulfur-containing bauxite during storage, by simulating the environment of minerals storage in laboratory, the acidification mechanism and influencing factors of high sulfur-containing bauxite were studied and confirmed using the single variable method to control the atmosphere, water and other variables. The results show that the acidification is mostly caused by the oxidation of sulfur-containing bauxite, which is mainly the natural oxidation of Pyrite(Fe S2), then the alkaline minerals dissolute in the presence of water, leading to the acidification phenomenon, which is influenced by moisture and air flow. Finally, more acid-producing substances are formed, resulting in the acidification of high sulfur-containing bauxite. The acidification of high sulfur-containing bauxite results from the combined effect of the oxygen in the air and water, which can be significantly alleviated by controlling the diffusion of the oxygen in air. 展开更多
关键词 high sulfur-containing bauxite PYRITE acidification mechanism
在线阅读 下载PDF
CFD simulation of effect of anode configuration on gas–liquid flow and alumina transport process in an aluminum reduction cell 被引量:3
4
作者 詹水清 李茂 +2 位作者 周孑民 杨建红 周益文 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2482-2492,共11页
Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction a... Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role. 展开更多
关键词 aluminum reduction cell anode configuration gas–liquid flow alumina transport process simulation alumina content distribution
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部