A titanium alloy containing continuous oxygen gradient was prepared by powder metallurgy(P/M) and the composition–property relationship was studied on a single sample. The alloy was sintered with layered powder of di...A titanium alloy containing continuous oxygen gradient was prepared by powder metallurgy(P/M) and the composition–property relationship was studied on a single sample. The alloy was sintered with layered powder of different oxygen contents via vacuum sintering and spark plasma sintering(SPS), respectively. After subsequent heat treatments, high-throughput characterizations of the microstructures and mechanical properties by localized measurements were conducted. The Ti-7% Mo(molar fraction) alloy with an oxygen content ranging from 1.3×10^(-3) to 6.2×10^(-5)(mass fraction) was obtained, and the effects of oxygen on the microstructural evolution and mechanical properties were studied. The results show that SPS is an effective way for fabricating fully dense Ti alloy with a compositional gradient. The average width of α′ phase coarsens with the increase of the content of oxygen. The content of α″ martensitic phase also increases with the content of oxygen. At oxygen contents of 3×10^(-3) and 4×10^(-3)(mass fraction), the Ti alloys present the lowest microhardness and the lowest elastic modulus, respectively. The results also indicate that the martensitic phases actually decrease the hardness of Ti-7Mo alloy, and oxygen effectively hardens the alloy by solid solution strengthening. Therefore, the high-throughput characterization on a microstructure with a gradient content of oxygen is an effective method for rapidly evaluating the composition–property relationship of titanium alloys.展开更多
Diglycidyl-4,5-epoxycyclohexane-1,2-dicarboxylate(TDE-85)/methyl tetrahydrophthalic anhydride (MeTHPA) epoxy resin was modified with polyurethane(PU) and the interpenetrating polymer networks(IPNs) of PU-modified TDE-...Diglycidyl-4,5-epoxycyclohexane-1,2-dicarboxylate(TDE-85)/methyl tetrahydrophthalic anhydride (MeTHPA) epoxy resin was modified with polyurethane(PU) and the interpenetrating polymer networks(IPNs) of PU-modified TDE-85/MeTHPA resin were prepared. The structural characteristics and properties of PU-modified TDE-85/MeTHPA resin were investigated by Fourier transform infrared(FTIR) spectrum,emission scanning electron microscopy(SEM) and thermogravimetry(TG). The results indicate that epoxy polymer network (Ⅰ) and polyurethane polymer network (Ⅱ) of the modified resin can be obtained and the networks (Ⅰ) and (Ⅱ) interpenetrate and tangle highly each other at the phase interface. The micro morphology presents heterogeneous structure. The integrative properties of PU-modified TDE-85/MeTHPA epoxy resin are improved obviously. The PU-modified TDE-85/ MeTHPA resin's tensile strength reaches 69.39 MPa,the impact strength reaches 23.56 kJ/m,the temperature for the system to lose 1% mass (t1%) is 300 ℃,and that for the system to lose 50% mass (t50%) is 378 ℃. Compared with those of TDE-85/MeTHPA resin,the tensile strength,impact strength,t1% and t50% of the PU-modified resin increases by 48%,115%,30 ℃,11 ℃,respectively. The PU-modified TDE-85/MeTHPA resin has the structure characteristics and properties of interpenetrating polymer networks.展开更多
Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 6...Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 600 ℃. The infiltration quality and interfacial bonding behavior were investigated by SEM, EDS, XRD and tensile tests. The results show that there is an obvious interfacial reaction layer between the alloying steel and the Ni/Al2O3 composite ceramic. The interfacial reactive products are (FexAly)3O4 intermetallic phase and (AlxCry)2O3 solid solution. The interracial bonding strength is as high as about 67.5 MPa. The bonding mechanism of X10CrNi 18-8 steel with the composite ceramic is that Ni inside the ceramic bodies dissolves into the alloy melt and transforms into liquid channels, consequently inducing the steel melt infiltrating and filling in the pores and the liquid channels. Moreover, the metallurgical bonding and interfacial reactive bonding also play a key role on the stability of the bonding interface.展开更多
The phase compositions and properties of Ti3SiC2-based composites with SiC addition of 5%-30% in mass fraction fabricated by in-situ reaction and hot pressing sintering were studied. SiC addition effectively prevented...The phase compositions and properties of Ti3SiC2-based composites with SiC addition of 5%-30% in mass fraction fabricated by in-situ reaction and hot pressing sintering were studied. SiC addition effectively prevented TiC synthesis but facilitated SiC synthesis. The Ti3SiC2/Ti C-SiC composite had better oxidation resistance when SiC added quantity reached 20% but poorer oxidation resistance with SiC addition under 15% than Ti3SiC2/TiC composite at higher temperatures. There were more than half of the original SiC and a few Ti3SiC2 remaining in Ti3SiC2/Ti C-SiC with 20% SiC addition, but all constituents in Ti3Si2/TiC composite were oxidized after 12 h in air at 1500 °C. The oxidation scale thickness of TS30, 1505.78 μm, was near a half of that of T,2715 μm, at 1500 °C for 20 h. Ti3SiC2/Ti C composite had a flexural strength of 474 MPa, which was surpassed by Ti3SiC2/TiC-SiC composites when SiC added amount reached 15%. The strength reached the peak of 518 MPa at 20% SiC added amount.展开更多
The effect of surface finish and annealing treatment on the oxidation behavior of Ti-48Al-8Cr-2Ag (molar fraction, %) alloy was investigated at 900 and 1 000 ℃, respectively in air. Thermal gravimetric analysis (TGA)...The effect of surface finish and annealing treatment on the oxidation behavior of Ti-48Al-8Cr-2Ag (molar fraction, %) alloy was investigated at 900 and 1 000 ℃, respectively in air. Thermal gravimetric analysis (TGA) was conducted for the characterization of oxidation kinetics. The microstructures of oxide scales were studied by scanning electron microscopy (SEM) and transmission election microscopy (TEM) techniques. Unfavorable effect of the annealing treatment on the oxidation behavior of the coating was also investigated. The results indicate that the oxidation behavior of the alloy is influenced by surface finish and annealing treatment. The oxidation rate of ground sample is lower than that of the polished alloy at 1 000 ℃ in air. The former forms a scale of merely Al2O3, and the latter forms a scale of the mixture of Al2O3 and TiO2. Annealing can improve the formation of TiO2.展开更多
Based on the pseudo potential plane-wave method of density functional theory (DFT), Ti1-xNbxAk (x=0, 0.062 5, 0.083 3, 0.125, 0.250) crystals' geometry structure, elastic constants, electronic structure and Mulli...Based on the pseudo potential plane-wave method of density functional theory (DFT), Ti1-xNbxAk (x=0, 0.062 5, 0.083 3, 0.125, 0.250) crystals' geometry structure, elastic constants, electronic structure and Mulliken populations were calculated, and the effects of doping on the geometric structure, electronic structure and bond strength were systematically analyzed. The results show that the influence of Nb on the geometric structure is little in terms of the plasticity, and with the increase of Nb content, the covalent bond strength remarkably reduces, and Ti-Al, Nb-M (M=Ti, Al) and other hybrid bonds enhance; meanwhile, the peak district increases and the pseudo-energy gap first decreases and then increases, the overall band structure narrows, the covalent bond and direction of bonds reduce. The population analysis also shows that the results are consistent with the electronic structure analysis. The density of states of TiAINb shows that Nb doping can enhance the activity of Al and benefit the form of Al2O3 film. All the calculations reveal that the room temperature plasticity and the antioxidation properties of the compounds can be improved with the Nb content of 8.33%-12.5% (mole fraction).展开更多
Hydrogen sulfide in rural biogas was removed with liquid-phase catalytic oxidation.By using rare earth as catalyst,and sulfosalicylic acid as stabilizer,H2S purification efficiency could increase as high as 96%,and su...Hydrogen sulfide in rural biogas was removed with liquid-phase catalytic oxidation.By using rare earth as catalyst,and sulfosalicylic acid as stabilizer,H2S purification efficiency could increase as high as 96%,and sulfur capacity of the composite solution was about 3 g/L.The results show that purification efficiency was affected by catalyst addition,pH,experimental temperature,and sulfur capacity.The parameters effects on catalytic oxidation were studied,and the optimized conditions were that Fe3+ concentration 0.08 mg/L,reaction temperature 70°C,pH 9.0,with a absorption solution volume of 50 mL,a gas flow rate 200 mL/min,and H2S mass concentration of 1.58-2.02 mg/m3.展开更多
基金Project(2014CB6644002)supported by the National Basic Research Program of ChinaProject(2015CX004)supported by the Innovation-driven Plan in Central South University,China+2 种基金Project(51301203)supported by the National Natural Science Foundation of ChinaProject(2014M551827)supported by the National Science Foundation for Post-doctoral Scientists of ChinaProject(2014GK3078)supported by the Science and Technology Planning of Hunan Province,China
文摘A titanium alloy containing continuous oxygen gradient was prepared by powder metallurgy(P/M) and the composition–property relationship was studied on a single sample. The alloy was sintered with layered powder of different oxygen contents via vacuum sintering and spark plasma sintering(SPS), respectively. After subsequent heat treatments, high-throughput characterizations of the microstructures and mechanical properties by localized measurements were conducted. The Ti-7% Mo(molar fraction) alloy with an oxygen content ranging from 1.3×10^(-3) to 6.2×10^(-5)(mass fraction) was obtained, and the effects of oxygen on the microstructural evolution and mechanical properties were studied. The results show that SPS is an effective way for fabricating fully dense Ti alloy with a compositional gradient. The average width of α′ phase coarsens with the increase of the content of oxygen. The content of α″ martensitic phase also increases with the content of oxygen. At oxygen contents of 3×10^(-3) and 4×10^(-3)(mass fraction), the Ti alloys present the lowest microhardness and the lowest elastic modulus, respectively. The results also indicate that the martensitic phases actually decrease the hardness of Ti-7Mo alloy, and oxygen effectively hardens the alloy by solid solution strengthening. Therefore, the high-throughput characterization on a microstructure with a gradient content of oxygen is an effective method for rapidly evaluating the composition–property relationship of titanium alloys.
基金Project(2003AA84ts04) supported by the National High-Tech Research and Development Program of China
文摘Diglycidyl-4,5-epoxycyclohexane-1,2-dicarboxylate(TDE-85)/methyl tetrahydrophthalic anhydride (MeTHPA) epoxy resin was modified with polyurethane(PU) and the interpenetrating polymer networks(IPNs) of PU-modified TDE-85/MeTHPA resin were prepared. The structural characteristics and properties of PU-modified TDE-85/MeTHPA resin were investigated by Fourier transform infrared(FTIR) spectrum,emission scanning electron microscopy(SEM) and thermogravimetry(TG). The results indicate that epoxy polymer network (Ⅰ) and polyurethane polymer network (Ⅱ) of the modified resin can be obtained and the networks (Ⅰ) and (Ⅱ) interpenetrate and tangle highly each other at the phase interface. The micro morphology presents heterogeneous structure. The integrative properties of PU-modified TDE-85/MeTHPA epoxy resin are improved obviously. The PU-modified TDE-85/ MeTHPA resin's tensile strength reaches 69.39 MPa,the impact strength reaches 23.56 kJ/m,the temperature for the system to lose 1% mass (t1%) is 300 ℃,and that for the system to lose 50% mass (t50%) is 378 ℃. Compared with those of TDE-85/MeTHPA resin,the tensile strength,impact strength,t1% and t50% of the PU-modified resin increases by 48%,115%,30 ℃,11 ℃,respectively. The PU-modified TDE-85/MeTHPA resin has the structure characteristics and properties of interpenetrating polymer networks.
基金Project(2009ZM0296) supported by the Fundamental Research Funds for the Central Universities in China
文摘Abstract: An alloy steel/alumina composite was successfully fabricated by pressureless infiltration of X10CrNil8-8 steel melt on 30% (mass fraction) Ni-containing alumina based composite ceramic (Ni/Al2O3) at 1 600 ℃. The infiltration quality and interfacial bonding behavior were investigated by SEM, EDS, XRD and tensile tests. The results show that there is an obvious interfacial reaction layer between the alloying steel and the Ni/Al2O3 composite ceramic. The interfacial reactive products are (FexAly)3O4 intermetallic phase and (AlxCry)2O3 solid solution. The interracial bonding strength is as high as about 67.5 MPa. The bonding mechanism of X10CrNi 18-8 steel with the composite ceramic is that Ni inside the ceramic bodies dissolves into the alloy melt and transforms into liquid channels, consequently inducing the steel melt infiltrating and filling in the pores and the liquid channels. Moreover, the metallurgical bonding and interfacial reactive bonding also play a key role on the stability of the bonding interface.
基金Project(51302206)supported by the National Natural Science Foundation of ChinaProject(2013JK0925)supported by Shaanxi Provincial Department of Education,China+1 种基金Project(SKLSP201308)supported by the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,ChinaProject supported by the State Scholarship Fund,China
文摘The phase compositions and properties of Ti3SiC2-based composites with SiC addition of 5%-30% in mass fraction fabricated by in-situ reaction and hot pressing sintering were studied. SiC addition effectively prevented TiC synthesis but facilitated SiC synthesis. The Ti3SiC2/Ti C-SiC composite had better oxidation resistance when SiC added quantity reached 20% but poorer oxidation resistance with SiC addition under 15% than Ti3SiC2/TiC composite at higher temperatures. There were more than half of the original SiC and a few Ti3SiC2 remaining in Ti3SiC2/Ti C-SiC with 20% SiC addition, but all constituents in Ti3Si2/TiC composite were oxidized after 12 h in air at 1500 °C. The oxidation scale thickness of TS30, 1505.78 μm, was near a half of that of T,2715 μm, at 1500 °C for 20 h. Ti3SiC2/Ti C composite had a flexural strength of 474 MPa, which was surpassed by Ti3SiC2/TiC-SiC composites when SiC added amount reached 15%. The strength reached the peak of 518 MPa at 20% SiC added amount.
基金Project(2007430028) supported by the Science and Technique Foundation of Henan Educational Committee, China
文摘The effect of surface finish and annealing treatment on the oxidation behavior of Ti-48Al-8Cr-2Ag (molar fraction, %) alloy was investigated at 900 and 1 000 ℃, respectively in air. Thermal gravimetric analysis (TGA) was conducted for the characterization of oxidation kinetics. The microstructures of oxide scales were studied by scanning electron microscopy (SEM) and transmission election microscopy (TEM) techniques. Unfavorable effect of the annealing treatment on the oxidation behavior of the coating was also investigated. The results indicate that the oxidation behavior of the alloy is influenced by surface finish and annealing treatment. The oxidation rate of ground sample is lower than that of the polished alloy at 1 000 ℃ in air. The former forms a scale of merely Al2O3, and the latter forms a scale of the mixture of Al2O3 and TiO2. Annealing can improve the formation of TiO2.
基金Project(07JJ3102) supported by Hunan Provincial Natural Science Foundation,ChinaProject(k0902132-11) supported by Changsha Municipal Science and Technology,China
文摘Based on the pseudo potential plane-wave method of density functional theory (DFT), Ti1-xNbxAk (x=0, 0.062 5, 0.083 3, 0.125, 0.250) crystals' geometry structure, elastic constants, electronic structure and Mulliken populations were calculated, and the effects of doping on the geometric structure, electronic structure and bond strength were systematically analyzed. The results show that the influence of Nb on the geometric structure is little in terms of the plasticity, and with the increase of Nb content, the covalent bond strength remarkably reduces, and Ti-Al, Nb-M (M=Ti, Al) and other hybrid bonds enhance; meanwhile, the peak district increases and the pseudo-energy gap first decreases and then increases, the overall band structure narrows, the covalent bond and direction of bonds reduce. The population analysis also shows that the results are consistent with the electronic structure analysis. The density of states of TiAINb shows that Nb doping can enhance the activity of Al and benefit the form of Al2O3 film. All the calculations reveal that the room temperature plasticity and the antioxidation properties of the compounds can be improved with the Nb content of 8.33%-12.5% (mole fraction).
基金Project(2008ZX07105-002) supported by the Erhai Lake Project of National Science and Technology Major Project in the 11th Five years Plan of China
文摘Hydrogen sulfide in rural biogas was removed with liquid-phase catalytic oxidation.By using rare earth as catalyst,and sulfosalicylic acid as stabilizer,H2S purification efficiency could increase as high as 96%,and sulfur capacity of the composite solution was about 3 g/L.The results show that purification efficiency was affected by catalyst addition,pH,experimental temperature,and sulfur capacity.The parameters effects on catalytic oxidation were studied,and the optimized conditions were that Fe3+ concentration 0.08 mg/L,reaction temperature 70°C,pH 9.0,with a absorption solution volume of 50 mL,a gas flow rate 200 mL/min,and H2S mass concentration of 1.58-2.02 mg/m3.