本文通过分步还原Ru、Pt前驱体,制备了以Ru为核、Pt Ru合金为壳的Ru@Pt_(0.24)Ru纳米花电催化剂,其平均直径为16.5±4.0 nm.利用高分辨电子显微镜、电感耦合等离子体原子发射光谱和X射线光电子能谱等表征了这种电催化剂的结构和组成...本文通过分步还原Ru、Pt前驱体,制备了以Ru为核、Pt Ru合金为壳的Ru@Pt_(0.24)Ru纳米花电催化剂,其平均直径为16.5±4.0 nm.利用高分辨电子显微镜、电感耦合等离子体原子发射光谱和X射线光电子能谱等表征了这种电催化剂的结构和组成.在1 mol·L^(-1)KOH水溶液中,核壳结构Ru@Pt_(0.24)Ru/C纳米花氢析出反应的过电位为22 mV(@10 m A·cm^(-2)),耐久性测试后过电位增加至30 m V(@10 m A·cm^(-2)),明显优于商业Pt/C电催化剂(初始值:60 m V@10 mA·cm^(-2),耐久性测试后:85 mV@10mA·cm^(-2)).显著提高的电化学活性可能源于核壳结构Ru@Pt_(0.24)Ru纳米花的电子效应和几何效应,耐久性的改善可能源于核壳结构Ru@Pt0.24Ru纳米花结构的稳定性.展开更多
镁/海水电池是一种高比能量、安全、低成本的水下电源,在该电池中氢析出电极具有重要的作用。采用氢气气泡模板法在泡沫镍基底上电化学沉积得到多孔镍,然后通过化学沉积法修饰微量铂(<25μg/cm2)制备出高效的多孔氢析出电极,并将其...镁/海水电池是一种高比能量、安全、低成本的水下电源,在该电池中氢析出电极具有重要的作用。采用氢气气泡模板法在泡沫镍基底上电化学沉积得到多孔镍,然后通过化学沉积法修饰微量铂(<25μg/cm2)制备出高效的多孔氢析出电极,并将其用作镁/海水电池阴极。通过SEM、EDS、电化学等表征方法分析了阴极的微观形貌、组成及电池的放电性能和性能衰减原因。结果表明:所制备的阴极含有丰富的纳米孔道结构,具有稳定的析氢性能;采用该阴极的镁/海水电池在1 m A/cm2并持续放电240 h的条件下,质量比能量高达801 Wh/kg。展开更多
The hydrazine oxidation reaction(HzOR)has garnered significant attention as a feasible approach to replace sluggish anodic reactions to save energy.Nevertheless,there are still difficulties in developing highly effici...The hydrazine oxidation reaction(HzOR)has garnered significant attention as a feasible approach to replace sluggish anodic reactions to save energy.Nevertheless,there are still difficulties in developing highly efficient catalysts for the HzOR.Herein,we report amorphous ruthenium nanosheets(a-Ru NSs)with a thickness of approximately 9.6 nm.As a superior bifunctional electrocatalyst,a-Ru NSs exhibited enhanced electrocatalytic performance toward both the HzOR and hydrogen evolution reaction(HER),outperforming benchmark Pt/C catalysts,where the a-Ru NSs achieved a work-ing potential of merely-76 mV and a low overpotential of only 17 mV to attain a current density of 10 mA·cm^(-2) for the HzOR and HER,respectively.Furthermore,a-Ru NSs displayed a low cell voltage of 28 mV at 10 mA·cm^(-2) for overall hy-drazine splitting in a two-electrode electrolyzer.In situ Raman spectra revealed that the a-Ru NSs can efficiently promote N‒N bond cleavage,thereby producing more*NH_(2)and accelerating the progress of the reaction.展开更多
Graphitic carbon nitride(g-C_(3)N_(4))exhibits great mechanical as well as thermal characteristics,making it a valuable ma-terial for use in photoelectric conversion devices,an accelerator for synthesis of organic com...Graphitic carbon nitride(g-C_(3)N_(4))exhibits great mechanical as well as thermal characteristics,making it a valuable ma-terial for use in photoelectric conversion devices,an accelerator for synthesis of organic compounds,an electrolyte for fuel cell applications or power sources,and a hydrogen storage substance and a fluorescence detector.It is fabricated using dif-ferent methods,and there is a variety of morphologies and nanostructures such as zero to three dimensions that have been designed for different purposes.Ther e are many reports about g-C_(3)N_(4) in recent years,but a comprehensive review which covers nanostructure dimensions and their properties are missing.This review paper aims to give basic and comprehensive understanding of the photocatalytic and electrocatalytic usages of g-C_(3)N_(4).It highlights the recent progress of g-C_(3)N_(4) nano-structure designing by covering synthesis methods,dimensions,morphologies,applications and properties.Along with the summary,we will also discuss the challenges and prospects.Scientists,investigators,and engineers looking at g-C_(3)N_(4) nanostructures for a variety of applications might find our review paper to be a useful resource.展开更多
High-Performance Rh2P Electrocatalyst for Efficient Water Splitting H.Duan,D.Li,Y.Tang,Y.He,S.Ji,R.Wang,H.Lv,P.P.Lopes,A.P.Paulikas,H.Li,S.X.Mao,C.Wang,N.M.Markovic,J.Li,V.R.Stamenkovic,Y.Li J.Am.Chem.Soc.DOI:10.1021...High-Performance Rh2P Electrocatalyst for Efficient Water Splitting H.Duan,D.Li,Y.Tang,Y.He,S.Ji,R.Wang,H.Lv,P.P.Lopes,A.P.Paulikas,H.Li,S.X.Mao,C.Wang,N.M.Markovic,J.Li,V.R.Stamenkovic,Y.Li J.Am.Chem.Soc.DOI:10.1021/jacs.7b01376通过溶剂热方法合成Ru_2P/C催化剂,P组分在表面富集,对氢析出反应(HER)与氧析出反应(OER)具有优异的催化活性.展开更多
文摘本文通过分步还原Ru、Pt前驱体,制备了以Ru为核、Pt Ru合金为壳的Ru@Pt_(0.24)Ru纳米花电催化剂,其平均直径为16.5±4.0 nm.利用高分辨电子显微镜、电感耦合等离子体原子发射光谱和X射线光电子能谱等表征了这种电催化剂的结构和组成.在1 mol·L^(-1)KOH水溶液中,核壳结构Ru@Pt_(0.24)Ru/C纳米花氢析出反应的过电位为22 mV(@10 m A·cm^(-2)),耐久性测试后过电位增加至30 m V(@10 m A·cm^(-2)),明显优于商业Pt/C电催化剂(初始值:60 m V@10 mA·cm^(-2),耐久性测试后:85 mV@10mA·cm^(-2)).显著提高的电化学活性可能源于核壳结构Ru@Pt_(0.24)Ru纳米花的电子效应和几何效应,耐久性的改善可能源于核壳结构Ru@Pt0.24Ru纳米花结构的稳定性.
基金supported by the National Key Research and Development Program of China(2017YFA0206500)the National Natural Science Foundation of China(21773198,U1705253)~~
文摘镁/海水电池是一种高比能量、安全、低成本的水下电源,在该电池中氢析出电极具有重要的作用。采用氢气气泡模板法在泡沫镍基底上电化学沉积得到多孔镍,然后通过化学沉积法修饰微量铂(<25μg/cm2)制备出高效的多孔氢析出电极,并将其用作镁/海水电池阴极。通过SEM、EDS、电化学等表征方法分析了阴极的微观形貌、组成及电池的放电性能和性能衰减原因。结果表明:所制备的阴极含有丰富的纳米孔道结构,具有稳定的析氢性能;采用该阴极的镁/海水电池在1 m A/cm2并持续放电240 h的条件下,质量比能量高达801 Wh/kg。
基金supported by the National Key R&D Program of China(2018YFA0702001)National Natural Science Foundation of China(22371268,22301287)+3 种基金Fundamental Research Funds for the Central Universities(WK2060000016)Anhui Provincial Natural Science Foundation(2208085J09,2208085QB33)Collaborative Innovation Program of Hefei Science Center,CAS(2022HSC-CIP020)Youth Innovation Promotion Association of the Chinese Academy of Science(2018494)and USTC Tang Scholar.
文摘The hydrazine oxidation reaction(HzOR)has garnered significant attention as a feasible approach to replace sluggish anodic reactions to save energy.Nevertheless,there are still difficulties in developing highly efficient catalysts for the HzOR.Herein,we report amorphous ruthenium nanosheets(a-Ru NSs)with a thickness of approximately 9.6 nm.As a superior bifunctional electrocatalyst,a-Ru NSs exhibited enhanced electrocatalytic performance toward both the HzOR and hydrogen evolution reaction(HER),outperforming benchmark Pt/C catalysts,where the a-Ru NSs achieved a work-ing potential of merely-76 mV and a low overpotential of only 17 mV to attain a current density of 10 mA·cm^(-2) for the HzOR and HER,respectively.Furthermore,a-Ru NSs displayed a low cell voltage of 28 mV at 10 mA·cm^(-2) for overall hy-drazine splitting in a two-electrode electrolyzer.In situ Raman spectra revealed that the a-Ru NSs can efficiently promote N‒N bond cleavage,thereby producing more*NH_(2)and accelerating the progress of the reaction.
基金M Tahir is funded by EU H2020 Marie Skłodows-ka-Curie Fellowship(1439425).
文摘Graphitic carbon nitride(g-C_(3)N_(4))exhibits great mechanical as well as thermal characteristics,making it a valuable ma-terial for use in photoelectric conversion devices,an accelerator for synthesis of organic compounds,an electrolyte for fuel cell applications or power sources,and a hydrogen storage substance and a fluorescence detector.It is fabricated using dif-ferent methods,and there is a variety of morphologies and nanostructures such as zero to three dimensions that have been designed for different purposes.Ther e are many reports about g-C_(3)N_(4) in recent years,but a comprehensive review which covers nanostructure dimensions and their properties are missing.This review paper aims to give basic and comprehensive understanding of the photocatalytic and electrocatalytic usages of g-C_(3)N_(4).It highlights the recent progress of g-C_(3)N_(4) nano-structure designing by covering synthesis methods,dimensions,morphologies,applications and properties.Along with the summary,we will also discuss the challenges and prospects.Scientists,investigators,and engineers looking at g-C_(3)N_(4) nanostructures for a variety of applications might find our review paper to be a useful resource.
文摘High-Performance Rh2P Electrocatalyst for Efficient Water Splitting H.Duan,D.Li,Y.Tang,Y.He,S.Ji,R.Wang,H.Lv,P.P.Lopes,A.P.Paulikas,H.Li,S.X.Mao,C.Wang,N.M.Markovic,J.Li,V.R.Stamenkovic,Y.Li J.Am.Chem.Soc.DOI:10.1021/jacs.7b01376通过溶剂热方法合成Ru_2P/C催化剂,P组分在表面富集,对氢析出反应(HER)与氧析出反应(OER)具有优异的催化活性.