Hydrogen-enriched ironmaking presents a promising approach to mitigate coke consumption and carbon emission in blast furnace(BF)operations.This work investigated the relationship between the structural features of cok...Hydrogen-enriched ironmaking presents a promising approach to mitigate coke consumption and carbon emission in blast furnace(BF)operations.This work investigated the relationship between the structural features of cokes and their reactivity towards solution loss(SL),especially under hydrogen-enriched atmospheres.Six cokes were characterized,and their SL behaviors were examined under varying atmospheres to elucidate the effects of hydrogen enrichment.The results indicate that an increase in fixed carbon content leads to a decrease in the coke reactivity index(CRI)and an increase in coke strength after reaction(CSR),in the CO_(2) atmosphere,the CSR of coke increases from 35.76%−62.83%,while in the 90CO_(2)/10H_(2) atmosphere,the CSR of coke increases from 65.67%−84.09%.There is a good linear relationship between CRI and microcrystalline structure parameters of coke.Cokes with larger crystalline size,lower amorphous content,and smaller optical texture index(OTI)values show enhanced resistance to degradation and maintain structural integrity in BF.Kinetic analysis performed with the shifted-modified-random pore model(S-MRPM)reveals that alterations in pore structure and intrinsic mineral composition significantly influence the reaction rate.The introduction of a small amount of water vapor raises SL rates,whereas a minor addition of hydrogen(<10%)decelerates SL due to its incomplete conversion to water vapor and the reduced partial pressure of the gasifying agent.Thermodynamic calculations also indicate that the introduced hydrogen does not convert into the same fraction of water vapor.The shift from chemical reaction control to gas diffusion control as the rate-determining step with rising temperatures during SL process was confirmed,and the introduction of hydrogen does not notably alter SL behavior.This result demonstrated that introducing a small amount of hydrogen(<10%)can mitigate SL rates,thereby enhancing coke strength and reducing coke consumption and carbon emissions.展开更多
In this work,a comprehensive comparison regarding the impacts of M(M=Cu,Co,Mn)substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10-xMx(M=Cu,Co,Mn; x=0-4...In this work,a comprehensive comparison regarding the impacts of M(M=Cu,Co,Mn)substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10-xMx(M=Cu,Co,Mn; x=0-4)alloys prepared by melt spinning has been carried out.The analysis of XRD and TEM reveals that the as-spun(M=None,Cu)alloys display an entire nanocrystalline structure,whereas the as-spun(M=Co,Mn)alloys hold a mixed structure of nanocrystalline and amorphous structure when M content x=4,indicating that the substitution of M(M=Co,Mn)for Ni facilitates the glass formation in the Mg2Ni-type alloy.Besides,all the as-spun alloys have a major phase of Mg2Ni but M(M=Co,Mn)substitution brings on the formation of some secondary phases,MgCo2 and Mg phases for M=Co as well as MnNi and Mg phases for M=Mn.Based upon the measurements of the automatic Sieverts apparatus and the automatic galvanostatic system,the impacts engendered by M(M=Cu,Co,Mn)substitution on the gaseous and electrochemical hydrogen storage kinetics of the alloys appear to be evident.The gaseous hydriding kinetics of the alloys first rises and then declines with the growing of M(M=Cu,Co,Mn)content.Particularly,the M(M= Mn)substitution results in a sharp drop in the hydriding kinetics when x=4.The M(M=Cu,Co,Mn)substitution ameliorates the dehydriding kinetics dramatically in the order(M=Co)>(M=Mn)>(M=Cu).The electrochemical kinetics of the alloys visibly grows with M content rising for(M=Cu,Co),while it first increases and then declines for(M=Mn).展开更多
The precipitation performance and kinetics of gibbsite from sodium aluminate solution with different sodium oxalate concentrations as well as the corresponding influence mechanism of oxalate during the seed precipitat...The precipitation performance and kinetics of gibbsite from sodium aluminate solution with different sodium oxalate concentrations as well as the corresponding influence mechanism of oxalate during the seed precipitation process were systematically investigated by physicochemical properties test,using SEM and Raman spectra.As the concentration of sodium oxalate increases,both the precipitation rate and particle size of gibbsite decrease.The presence of sodium oxalate not only increases the viscosity of sodium aluminate solution,but also promotes the transformation of Al(OH)4^? to Al2O(OH)6^2?.The overall reaction rate constant decreases and the apparent activation energy of gibbsite increases with the increasing sodium oxalate concentration,the rate controlling step of which is chemical reaction.The needle-like sodium oxalate precipitates on the gibbsite crystals and covers the active Al(OH)3 seed sites,which leads to the lower precipitation rate and the finer particle size of gibbsite during the seed precipitation process.展开更多
Desilication kinetics of calcined boron mud(CBM) occurring in molten sodium hydroxide media was investigated. The effects of factors such as reaction temperature and Na OH-to-CBM mass ratio on silicon extraction effic...Desilication kinetics of calcined boron mud(CBM) occurring in molten sodium hydroxide media was investigated. The effects of factors such as reaction temperature and Na OH-to-CBM mass ratio on silicon extraction efficiency were studied. The results show that silicon extraction efficiency increases with increasing the reaction time and Na OH-to-CBM mass ratio. There are two stages for the desilication process of the calcined boron mud. The overall desilication process follows the shrinking-core model, and the first and second stages of the process were determined to obey the shrinking-core model for surface chemical reaction and the diffusion through the product layer, respectively. The activation energies of the first and second stages were calculated to be 44.78 k J/mol and 15.94 k J/mol, respectively.展开更多
The fluorine-based chemical method shows great potential in leaching lithium(Li) from lepidolite. Leaching kinetics of Li in a mixture of sulfuric acid and hydrofluoric acid, which is a typical lixivant for the fluori...The fluorine-based chemical method shows great potential in leaching lithium(Li) from lepidolite. Leaching kinetics of Li in a mixture of sulfuric acid and hydrofluoric acid, which is a typical lixivant for the fluorine-based chemical method, was carried out under crucial factors such as different HF/ore ratios(1:1-3:1 g/mL) and leaching temperatures(50-85℃). The kinetics data fit well with the developed shrinking-core model, indicating that the leaching rate of Li was controlled by the chemical reaction and inner diffusion at the beginning of leaching(0-30 min) as a calculated apparent activation energy(Ea) of 20.62 kJ/mol. The inner diffusion became the rate-limiting step as the leaching continues(60-180 min). Moreover, effects of HF/ore ratio and leaching temperature on selective leaching behavior of Li, Al and Si were discussed. 90% of fluorine mainly existed as HF/F-in leaching solution, which can provide theoretical guidance for further removal or recovery of F.展开更多
In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied...In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems.展开更多
Hydrogen sulfide in rural biogas was removed with liquid-phase catalytic oxidation.By using rare earth as catalyst,and sulfosalicylic acid as stabilizer,H2S purification efficiency could increase as high as 96%,and su...Hydrogen sulfide in rural biogas was removed with liquid-phase catalytic oxidation.By using rare earth as catalyst,and sulfosalicylic acid as stabilizer,H2S purification efficiency could increase as high as 96%,and sulfur capacity of the composite solution was about 3 g/L.The results show that purification efficiency was affected by catalyst addition,pH,experimental temperature,and sulfur capacity.The parameters effects on catalytic oxidation were studied,and the optimized conditions were that Fe3+ concentration 0.08 mg/L,reaction temperature 70°C,pH 9.0,with a absorption solution volume of 50 mL,a gas flow rate 200 mL/min,and H2S mass concentration of 1.58-2.02 mg/m3.展开更多
基金supported by National Natural Science Foundation of China(22178002,22178001)Natural Science Foundation of Anhui Province(2308085Y19)Excellent Youth Research Project of Anhui Provincial Department of Education(2022AH030045).
文摘Hydrogen-enriched ironmaking presents a promising approach to mitigate coke consumption and carbon emission in blast furnace(BF)operations.This work investigated the relationship between the structural features of cokes and their reactivity towards solution loss(SL),especially under hydrogen-enriched atmospheres.Six cokes were characterized,and their SL behaviors were examined under varying atmospheres to elucidate the effects of hydrogen enrichment.The results indicate that an increase in fixed carbon content leads to a decrease in the coke reactivity index(CRI)and an increase in coke strength after reaction(CSR),in the CO_(2) atmosphere,the CSR of coke increases from 35.76%−62.83%,while in the 90CO_(2)/10H_(2) atmosphere,the CSR of coke increases from 65.67%−84.09%.There is a good linear relationship between CRI and microcrystalline structure parameters of coke.Cokes with larger crystalline size,lower amorphous content,and smaller optical texture index(OTI)values show enhanced resistance to degradation and maintain structural integrity in BF.Kinetic analysis performed with the shifted-modified-random pore model(S-MRPM)reveals that alterations in pore structure and intrinsic mineral composition significantly influence the reaction rate.The introduction of a small amount of water vapor raises SL rates,whereas a minor addition of hydrogen(<10%)decelerates SL due to its incomplete conversion to water vapor and the reduced partial pressure of the gasifying agent.Thermodynamic calculations also indicate that the introduced hydrogen does not convert into the same fraction of water vapor.The shift from chemical reaction control to gas diffusion control as the rate-determining step with rising temperatures during SL process was confirmed,and the introduction of hydrogen does not notably alter SL behavior.This result demonstrated that introducing a small amount of hydrogen(<10%)can mitigate SL rates,thereby enhancing coke strength and reducing coke consumption and carbon emissions.
基金Projects(51161015,51371094)supported by National Natural Science Foundations of ChinaProject(2011ZD10)supported by Natural Science Foundation of Inner Mongolia,China
文摘In this work,a comprehensive comparison regarding the impacts of M(M=Cu,Co,Mn)substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10-xMx(M=Cu,Co,Mn; x=0-4)alloys prepared by melt spinning has been carried out.The analysis of XRD and TEM reveals that the as-spun(M=None,Cu)alloys display an entire nanocrystalline structure,whereas the as-spun(M=Co,Mn)alloys hold a mixed structure of nanocrystalline and amorphous structure when M content x=4,indicating that the substitution of M(M=Co,Mn)for Ni facilitates the glass formation in the Mg2Ni-type alloy.Besides,all the as-spun alloys have a major phase of Mg2Ni but M(M=Co,Mn)substitution brings on the formation of some secondary phases,MgCo2 and Mg phases for M=Co as well as MnNi and Mg phases for M=Mn.Based upon the measurements of the automatic Sieverts apparatus and the automatic galvanostatic system,the impacts engendered by M(M=Cu,Co,Mn)substitution on the gaseous and electrochemical hydrogen storage kinetics of the alloys appear to be evident.The gaseous hydriding kinetics of the alloys first rises and then declines with the growing of M(M=Cu,Co,Mn)content.Particularly,the M(M= Mn)substitution results in a sharp drop in the hydriding kinetics when x=4.The M(M=Cu,Co,Mn)substitution ameliorates the dehydriding kinetics dramatically in the order(M=Co)>(M=Mn)>(M=Cu).The electrochemical kinetics of the alloys visibly grows with M content rising for(M=Cu,Co),while it first increases and then declines for(M=Mn).
基金Projects(51774079,51674075)supported by the National Natural Science Foundation of ChinaProject(N182508026)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The precipitation performance and kinetics of gibbsite from sodium aluminate solution with different sodium oxalate concentrations as well as the corresponding influence mechanism of oxalate during the seed precipitation process were systematically investigated by physicochemical properties test,using SEM and Raman spectra.As the concentration of sodium oxalate increases,both the precipitation rate and particle size of gibbsite decrease.The presence of sodium oxalate not only increases the viscosity of sodium aluminate solution,but also promotes the transformation of Al(OH)4^? to Al2O(OH)6^2?.The overall reaction rate constant decreases and the apparent activation energy of gibbsite increases with the increasing sodium oxalate concentration,the rate controlling step of which is chemical reaction.The needle-like sodium oxalate precipitates on the gibbsite crystals and covers the active Al(OH)3 seed sites,which leads to the lower precipitation rate and the finer particle size of gibbsite during the seed precipitation process.
基金Project(51204037)supported by the National Natural Science Foundation of ChinaProject(N140204016)supported by the Fundamental Research Funds for the Central Universities,China
文摘Desilication kinetics of calcined boron mud(CBM) occurring in molten sodium hydroxide media was investigated. The effects of factors such as reaction temperature and Na OH-to-CBM mass ratio on silicon extraction efficiency were studied. The results show that silicon extraction efficiency increases with increasing the reaction time and Na OH-to-CBM mass ratio. There are two stages for the desilication process of the calcined boron mud. The overall desilication process follows the shrinking-core model, and the first and second stages of the process were determined to obey the shrinking-core model for surface chemical reaction and the diffusion through the product layer, respectively. The activation energies of the first and second stages were calculated to be 44.78 k J/mol and 15.94 k J/mol, respectively.
基金Project(51474237)supported by the National Natural Science Foundation of China
文摘The fluorine-based chemical method shows great potential in leaching lithium(Li) from lepidolite. Leaching kinetics of Li in a mixture of sulfuric acid and hydrofluoric acid, which is a typical lixivant for the fluorine-based chemical method, was carried out under crucial factors such as different HF/ore ratios(1:1-3:1 g/mL) and leaching temperatures(50-85℃). The kinetics data fit well with the developed shrinking-core model, indicating that the leaching rate of Li was controlled by the chemical reaction and inner diffusion at the beginning of leaching(0-30 min) as a calculated apparent activation energy(Ea) of 20.62 kJ/mol. The inner diffusion became the rate-limiting step as the leaching continues(60-180 min). Moreover, effects of HF/ore ratio and leaching temperature on selective leaching behavior of Li, Al and Si were discussed. 90% of fluorine mainly existed as HF/F-in leaching solution, which can provide theoretical guidance for further removal or recovery of F.
基金Projects(61203020,61403190)supported by the National Natural Science Foundation of ChinaProject(BK20141461)supported by the Jiangsu Province Natural Science Foundation,China
文摘In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems.
基金Project(2008ZX07105-002) supported by the Erhai Lake Project of National Science and Technology Major Project in the 11th Five years Plan of China
文摘Hydrogen sulfide in rural biogas was removed with liquid-phase catalytic oxidation.By using rare earth as catalyst,and sulfosalicylic acid as stabilizer,H2S purification efficiency could increase as high as 96%,and sulfur capacity of the composite solution was about 3 g/L.The results show that purification efficiency was affected by catalyst addition,pH,experimental temperature,and sulfur capacity.The parameters effects on catalytic oxidation were studied,and the optimized conditions were that Fe3+ concentration 0.08 mg/L,reaction temperature 70°C,pH 9.0,with a absorption solution volume of 50 mL,a gas flow rate 200 mL/min,and H2S mass concentration of 1.58-2.02 mg/m3.