期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合LightGBM的ResNeXt气象目标细粒度识别方法
1
作者 欧阳彤 汪玲 +1 位作者 朱岱寅 李勇 《系统工程与电子技术》 EI CSCD 北大核心 2024年第12期4034-4043,共10页
为精确识别气象目标与混杂其中的非气象目标,提出一种融合轻量级梯度提升机(light gradient boosting machine,LightGBM)与残差网络的残差网络(residual network of residual network:next generation,ResNeXt)的气象目标识别方法。首先... 为精确识别气象目标与混杂其中的非气象目标,提出一种融合轻量级梯度提升机(light gradient boosting machine,LightGBM)与残差网络的残差网络(residual network of residual network:next generation,ResNeXt)的气象目标识别方法。首先,制作块状样本数据集,以此数据集为驱动,建立以ResNeXt为基础的气象目标识别网络模型,实现以块状数据样本为识别单位的气象目标粗粒度识别,识别精度可达99.6%以上;然后,再将此粗粒度结果与参考数据的差异值纳入LightGBM分类器,得到以雷达采样单元为识别单位的细粒度识别结果。结合实际观测数据,证明所提方法融合了LightGBM细粒度识别与ResNeXt高精度识别的能力,能够完成气象目标与杂波的判别,判别结果与参考结果高度一致。结合实际观测数据,证明所提方法融合了LightGBM细粒度识别与ResNeXt高精度识别的能力,能够完成气象目标与杂波的判别,判别结果与参考结果高度一致。 展开更多
关键词 气象雷达 气象目标识别 残差网络 轻量级梯度提升机 融合 深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部