A simple and sensitive analytical procedure for the determination of multi-component compounds in water samples was developed and optimized using the headspace solid-phase microextraction(HSSPME) coupled with gas chro...A simple and sensitive analytical procedure for the determination of multi-component compounds in water samples was developed and optimized using the headspace solid-phase microextraction(HSSPME) coupled with gas chromatography-mass spectrometry(GC-MS). Ten off-flavor compounds, including geosmin(GSM), 2-methylisoborneol(2-MIB), 2-isopropyl-3-methoxypyrazine(IPMP), 2-isobutyl-3-methoxypyrazine(IBMP), β-ionone, trans-2,cis-6-nonadienal(NDE), 2,3,4-trichloroanisole(2,3,4-TCA), 2,3,6-trichroloanisole(2,3,6-TCA), 2,4,6-trichloroanisole(2,4,6-TCA), and 2,4,6-tribromoanisole(2,4,6-TBA) were used as the target analytes. The optimization of extraction parameters including fibers types, extraction time, extraction temperature, stirring rate, sample volume, and ionic strength was carried out through the univariate approach. Ten off-flavor compounds were quantified within 50 min under the optimal conditions. Calibration curves with good linearity(r^2=0.990-0.998) were obtained in the range 1.0/2.0-100 ng/L, while the limits of detection for all compounds were lower than or close to the odor threshold concentration. Furthermore, the proposed method was applied to analyzing and determining the off-flavor compounds in real water samples from water-treatment plants.展开更多
Gas chromatography-mass spectrometry(GC-MS) and the chemometric resolution method(alternative moving window factor analysis,AMWFA) were used for comparative analysis of volatile constituents in herbal pair(HP) flos lo...Gas chromatography-mass spectrometry(GC-MS) and the chemometric resolution method(alternative moving window factor analysis,AMWFA) were used for comparative analysis of volatile constituents in herbal pair(HP) flos lonicerae-caulis lonicerae(FL-CL) and its single herbs.The temperature-programmed retention index(PTRI) was also employed for the identification of compounds.In total,44,39,and 50 volatile chemical components in volatile oil of FL,CL and HP FL-CL were separately determined qualitatively and quantitatively,accounting for 87.22%,94.54% and 90.08% total contents of volatile oil of FL,CL and HP FL-CL,respectively.The results show that there are 32 common volatile constituents between HP FL-CL and single herb FL,33 common volatile constituents between HP FL-CL and single herb CL,and 10 new constituents in the volatile oil of HP FL-CL.展开更多
A simple and rapid technique based on liquid-liquid extraction coupled to gas chromatography-mass spectrometric detection(LLE-GC-MS) was developed for analysis of taste and odour compound β-ionone in water. Instrumen...A simple and rapid technique based on liquid-liquid extraction coupled to gas chromatography-mass spectrometric detection(LLE-GC-MS) was developed for analysis of taste and odour compound β-ionone in water. Instrument parameters including programmed oven temperature, injection temperature and ion source temperature were evaluated and optimized. Effects of extraction time, ionic strength and p H on the detection efficiency were investigated and optimum conditions were 8 min of extraction time, without Na Cl addition at p H=9. Good linearity(R2=0.9997) was obtained when the linear range was 10-500 μg/L. The recoveries of β-ionone in ultrapure water and tap water samples were 88%-95% and 110%-114%, respectively. The relative standard deviations(RSD) were less than 10%. The method detection limit(MDL) and rejection quality level(RQL) were achieved at1.98 μg/L and 6.53 μg/L, respectively. LLE-GC-MS was demonstrated to be a rapid and convenient method for the determination ofβ-ionone in water samples.展开更多
基金Project(21277175) supported by the National Natural Science Foundation of ChinaProject(JCYJ20120618164317119) supported by Shenzhen Special Fund for Development of Strategic Emerging,China
文摘A simple and sensitive analytical procedure for the determination of multi-component compounds in water samples was developed and optimized using the headspace solid-phase microextraction(HSSPME) coupled with gas chromatography-mass spectrometry(GC-MS). Ten off-flavor compounds, including geosmin(GSM), 2-methylisoborneol(2-MIB), 2-isopropyl-3-methoxypyrazine(IPMP), 2-isobutyl-3-methoxypyrazine(IBMP), β-ionone, trans-2,cis-6-nonadienal(NDE), 2,3,4-trichloroanisole(2,3,4-TCA), 2,3,6-trichroloanisole(2,3,6-TCA), 2,4,6-trichloroanisole(2,4,6-TCA), and 2,4,6-tribromoanisole(2,4,6-TBA) were used as the target analytes. The optimization of extraction parameters including fibers types, extraction time, extraction temperature, stirring rate, sample volume, and ionic strength was carried out through the univariate approach. Ten off-flavor compounds were quantified within 50 min under the optimal conditions. Calibration curves with good linearity(r^2=0.990-0.998) were obtained in the range 1.0/2.0-100 ng/L, while the limits of detection for all compounds were lower than or close to the odor threshold concentration. Furthermore, the proposed method was applied to analyzing and determining the off-flavor compounds in real water samples from water-treatment plants.
基金Project(20976017) supported by the National Natural Science Foundation of China
文摘Gas chromatography-mass spectrometry(GC-MS) and the chemometric resolution method(alternative moving window factor analysis,AMWFA) were used for comparative analysis of volatile constituents in herbal pair(HP) flos lonicerae-caulis lonicerae(FL-CL) and its single herbs.The temperature-programmed retention index(PTRI) was also employed for the identification of compounds.In total,44,39,and 50 volatile chemical components in volatile oil of FL,CL and HP FL-CL were separately determined qualitatively and quantitatively,accounting for 87.22%,94.54% and 90.08% total contents of volatile oil of FL,CL and HP FL-CL,respectively.The results show that there are 32 common volatile constituents between HP FL-CL and single herb FL,33 common volatile constituents between HP FL-CL and single herb CL,and 10 new constituents in the volatile oil of HP FL-CL.
基金Project(51178321)supported by the National Natural Science Foundation of ChinaProject(2012ZX07403-001)supported by the National Science and Technology Major Project,ChinaProject(20120072110050)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘A simple and rapid technique based on liquid-liquid extraction coupled to gas chromatography-mass spectrometric detection(LLE-GC-MS) was developed for analysis of taste and odour compound β-ionone in water. Instrument parameters including programmed oven temperature, injection temperature and ion source temperature were evaluated and optimized. Effects of extraction time, ionic strength and p H on the detection efficiency were investigated and optimum conditions were 8 min of extraction time, without Na Cl addition at p H=9. Good linearity(R2=0.9997) was obtained when the linear range was 10-500 μg/L. The recoveries of β-ionone in ultrapure water and tap water samples were 88%-95% and 110%-114%, respectively. The relative standard deviations(RSD) were less than 10%. The method detection limit(MDL) and rejection quality level(RQL) were achieved at1.98 μg/L and 6.53 μg/L, respectively. LLE-GC-MS was demonstrated to be a rapid and convenient method for the determination ofβ-ionone in water samples.