气体电子倍增器(GEM)以其独特的性能在辐射探测器领域得到了广泛的应用,对50μm厚聚酰亚胺(kapton)薄膜利用真空热蒸发和激光掩膜打孔法制作GEM膜,孔径100μm,孔距223μm,并封装流气式探测器,有效探测面积3mm×3mm。5.9keV55F e X...气体电子倍增器(GEM)以其独特的性能在辐射探测器领域得到了广泛的应用,对50μm厚聚酰亚胺(kapton)薄膜利用真空热蒸发和激光掩膜打孔法制作GEM膜,孔径100μm,孔距223μm,并封装流气式探测器,有效探测面积3mm×3mm。5.9keV55F e X射线测量了GEM在不同高压和混合气体比例时的脉冲幅度分布情况。讨论了高压和气体比例对探测器计数率和能量分辨率的影响。结果表明GEM具有较高的信噪比,能量分辨率可达18.2%。展开更多
研制了一种适用于高能物理GEM探测器读出系统的数字芯片。芯片采用PAD读出方式,对GEM探测器的输出直接采样,对采样到的信号放大并成形,判断该输入是否超过由外部DAC设定的阈值,给出判断结果,并按照一个串行协议读出。芯片采用0.35μm/3....研制了一种适用于高能物理GEM探测器读出系统的数字芯片。芯片采用PAD读出方式,对GEM探测器的输出直接采样,对采样到的信号放大并成形,判断该输入是否超过由外部DAC设定的阈值,给出判断结果,并按照一个串行协议读出。芯片采用0.35μm/3.3 V CMOS工艺设计,后仿真结果显示芯片达到预期研制目标。展开更多
文摘气体电子倍增器(GEM)以其独特的性能在辐射探测器领域得到了广泛的应用,对50μm厚聚酰亚胺(kapton)薄膜利用真空热蒸发和激光掩膜打孔法制作GEM膜,孔径100μm,孔距223μm,并封装流气式探测器,有效探测面积3mm×3mm。5.9keV55F e X射线测量了GEM在不同高压和混合气体比例时的脉冲幅度分布情况。讨论了高压和气体比例对探测器计数率和能量分辨率的影响。结果表明GEM具有较高的信噪比,能量分辨率可达18.2%。
文摘研制了一种适用于高能物理GEM探测器读出系统的数字芯片。芯片采用PAD读出方式,对GEM探测器的输出直接采样,对采样到的信号放大并成形,判断该输入是否超过由外部DAC设定的阈值,给出判断结果,并按照一个串行协议读出。芯片采用0.35μm/3.3 V CMOS工艺设计,后仿真结果显示芯片达到预期研制目标。