Based on the commercial computational fluid dynamics software CFX-4.3, electrolyte flow fields in a 156 kA pre-baked anode aluminum electrolysis cell were investigated in three different cases where the electrolyte me...Based on the commercial computational fluid dynamics software CFX-4.3, electrolyte flow fields in a 156 kA pre-baked anode aluminum electrolysis cell were investigated in three different cases where the electrolyte melt was driven by different kinds of force, i.e. electromagnetic force only, the anode gas drag force only and both of the former two forces. The results show that when electromagnetic force was introduced only, most of the electrolyte moves horizontally; when anode gas drag force was introduced only, the electrolyte flows mainly around each anode with small circulation; when electromagnetic force and anode gas drag force were both introduced together, the structure of the electrolyte flow fields and the velocity of electrolyte are similar to that of the case where only anode gas drag force is used. The electrolyte flow fields are mainly determined by the anode gas drag force.展开更多
The numerical model for predicting the flow and temperature fields of the melt in holding furnace with porous brick purging system were set up using Euler-Lagrange approach.In this model,bubbles coalescence and disint...The numerical model for predicting the flow and temperature fields of the melt in holding furnace with porous brick purging system were set up using Euler-Lagrange approach.In this model,bubbles coalescence and disintegration were ignored based on the dimensionless analysis,and the bubble size was assumed to be obedient to Rosin-Rammler distribution with a mean size of 0.6 mm.The results show that on reference operating condition,during the heating and agitation process,melt mixes well in the furnace,and the melt velocity increases with the increase of gas flux.Holding the melt for 30 min causes the max temperature in the bulk melt to increase to 60 K.After holding the heat,the agitation processing restarts,and it takes 10 min for the stratified melt to retrieve the homogeneous temperature field when the gas flux is 10 L/min,which shows deficient alloying and degassing in the melt.With the increase of gas flux from 10 to 20,30 and 40 L/min,the necessary recovery time decreases from 10 to 6,5 and 4 min gradually,which shows the improvement of the stirring efficiency.Depending on the processing purposes,for both good degassing performance and gas saving,proper operating strategy and parameters (gas flux,primarily) could be adjusted.展开更多
A model for liquid-gas flow (MLGF), considering the flee movement of liquid surface, was built to simulate the wastewater velocity field and gas distribution in a full-scale Caroussel oxidation ditch with surface ae...A model for liquid-gas flow (MLGF), considering the flee movement of liquid surface, was built to simulate the wastewater velocity field and gas distribution in a full-scale Caroussel oxidation ditch with surface aeration. It was calibrated and validated by field measurement data, and the calibrated parameters and sections were selected based on both model analysis and numerical computation. The simulated velocities of MLGF were compared to that of a model for wastewater-sludge flow (MWSF). The results show that the free liquid surface considered in MLGF improves the simulated velocity results of upper layer and surface. Moreover, distribution of gas volume fraction (GVF) simulated by MLGF was compared to dissolved oxygen (DO) measured in the oxidation ditch. It is shown that DO distribution is affected by many factors besides GVF distribution.展开更多
Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simula...Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simulation model according to the experimental setup of SER has been built.The mathematical model considers heat exchanges,source air pressure and temperature,environmental temperatures and heat transfer coefficients variations.In addition,the compensation for real gas effect is used in the model building.The comparison between experiments and simulations of SER indicates that,to compensate the real gas effect in high pressure discharging process,the thermal capacity of air supply container in simulation should be less than the actual value.The higher the pressure range,the greater the deviation.Simulated and experimental results are highly consistent within pressure reduction ratios ranging from 1.4 to 20 and output air mass flow rates ranging from 3.5 to 132 g/s,which verifies the high adaptability of SER and the validity of the mathematic model and the compensation method.展开更多
基金Project (G1999064903) supported by the National Key Fundamental Research and Development Programof China
文摘Based on the commercial computational fluid dynamics software CFX-4.3, electrolyte flow fields in a 156 kA pre-baked anode aluminum electrolysis cell were investigated in three different cases where the electrolyte melt was driven by different kinds of force, i.e. electromagnetic force only, the anode gas drag force only and both of the former two forces. The results show that when electromagnetic force was introduced only, most of the electrolyte moves horizontally; when anode gas drag force was introduced only, the electrolyte flows mainly around each anode with small circulation; when electromagnetic force and anode gas drag force were both introduced together, the structure of the electrolyte flow fields and the velocity of electrolyte are similar to that of the case where only anode gas drag force is used. The electrolyte flow fields are mainly determined by the anode gas drag force.
基金Project(2008AA11A116) supported by the National High Technology Research and Development Program of China
文摘The numerical model for predicting the flow and temperature fields of the melt in holding furnace with porous brick purging system were set up using Euler-Lagrange approach.In this model,bubbles coalescence and disintegration were ignored based on the dimensionless analysis,and the bubble size was assumed to be obedient to Rosin-Rammler distribution with a mean size of 0.6 mm.The results show that on reference operating condition,during the heating and agitation process,melt mixes well in the furnace,and the melt velocity increases with the increase of gas flux.Holding the melt for 30 min causes the max temperature in the bulk melt to increase to 60 K.After holding the heat,the agitation processing restarts,and it takes 10 min for the stratified melt to retrieve the homogeneous temperature field when the gas flux is 10 L/min,which shows deficient alloying and degassing in the melt.With the increase of gas flux from 10 to 20,30 and 40 L/min,the necessary recovery time decreases from 10 to 6,5 and 4 min gradually,which shows the improvement of the stirring efficiency.Depending on the processing purposes,for both good degassing performance and gas saving,proper operating strategy and parameters (gas flux,primarily) could be adjusted.
基金Project supported by Visiting Scholar Foundation of Key Laboratory of the Resources Exploitation and Environmental Disaster Control Engineering in Southwest China (Chongqing University),Ministry of Education,China
文摘A model for liquid-gas flow (MLGF), considering the flee movement of liquid surface, was built to simulate the wastewater velocity field and gas distribution in a full-scale Caroussel oxidation ditch with surface aeration. It was calibrated and validated by field measurement data, and the calibrated parameters and sections were selected based on both model analysis and numerical computation. The simulated velocities of MLGF were compared to that of a model for wastewater-sludge flow (MWSF). The results show that the free liquid surface considered in MLGF improves the simulated velocity results of upper layer and surface. Moreover, distribution of gas volume fraction (GVF) simulated by MLGF was compared to dissolved oxygen (DO) measured in the oxidation ditch. It is shown that DO distribution is affected by many factors besides GVF distribution.
基金Project(51205421)supported by the National Natural Science Foundation of ChinaProject(2012M521647)supported by the Postdoctoral Science Foundation of China
文摘Switching expansion reduction(SER)uses a switch valve instead of the throttle valve to realize electronically controlled pressure reduction for high pressure pneumatics.A comprehensive and interactive pneumatic simulation model according to the experimental setup of SER has been built.The mathematical model considers heat exchanges,source air pressure and temperature,environmental temperatures and heat transfer coefficients variations.In addition,the compensation for real gas effect is used in the model building.The comparison between experiments and simulations of SER indicates that,to compensate the real gas effect in high pressure discharging process,the thermal capacity of air supply container in simulation should be less than the actual value.The higher the pressure range,the greater the deviation.Simulated and experimental results are highly consistent within pressure reduction ratios ranging from 1.4 to 20 and output air mass flow rates ranging from 3.5 to 132 g/s,which verifies the high adaptability of SER and the validity of the mathematic model and the compensation method.