为了对黄河鲤体质量性状进行全基因组关联分析及全基因组选择模型的预测准确性比较,采用鲤250K高密度SNP芯片对613尾黄河鲤(Cyprinus carpio)进行基因分型,并通过测定其体质量性状的表型信息进行全基因组关联分析,以及基于体质量性状、...为了对黄河鲤体质量性状进行全基因组关联分析及全基因组选择模型的预测准确性比较,采用鲤250K高密度SNP芯片对613尾黄河鲤(Cyprinus carpio)进行基因分型,并通过测定其体质量性状的表型信息进行全基因组关联分析,以及基于体质量性状、全基因组关联分析(genome-wide association study,GWAS)的不同变异数据集对GBLUP、贝叶斯、RKHS和机器学习模型等10种全基因组选择模型的预测准确性进行比较,以筛选出适用于黄河鲤体质量性状的全基因组选择模型。结果表明:通过GWAS定位到与体质量性状相关的5个SNP,位于1号和21号染色体上,进一步筛选关联SNP所在区域的基因,定位到WBP1L、GPM6B、TIMMDC1、RCAN1、EOGT基因;当选取与黄河鲤体质量性状表型相关的前100个SNP作为数据集,分析全基因组选择模型预测准确性时,机器学习模型XGBoost的预测准确性最高,为0.26,当SNP的数量分别为500、1000、3000、5000、20000时,GBLUP模型的准确性均最高,分别为0.3084、0.3444、0.4393、0.4526、0.4007,而XGBoost、LightGBM和GBLUP模型的变异系数则较低,说明模型预测的稳定性相对可靠。研究表明,本研究中共鉴定到5个与黄河鲤体质量性状相关的候选基因,分别为WBP1L、GPM6B、TIMMDC1、RCAN1、EOGT,10种全基因组选择模型中GBLUP模型的预测准确性最高,可用于黄河鲤体质量性状的基因组选育。展开更多
为探究一步法基因组最佳线性无偏预测(SSGBLUP)法应用于内蒙古绒山羊育种的选择效果,本研究基于课题组前期积累的健康状况良好的内蒙古绒山羊(阿尔巴斯型)2256只个体的70 K SNP芯片测序数据,收集整理1至8岁个体的绒毛性状(绒长、绒细和...为探究一步法基因组最佳线性无偏预测(SSGBLUP)法应用于内蒙古绒山羊育种的选择效果,本研究基于课题组前期积累的健康状况良好的内蒙古绒山羊(阿尔巴斯型)2256只个体的70 K SNP芯片测序数据,收集整理1至8岁个体的绒毛性状(绒长、绒细和产绒量)生产性能数据和系谱记录,通过设定SSGBLUP法中H逆矩阵的不同矩阵参数(ω,τ)进行基因组育种值估计,并利用五倍交叉验证法评价基因组育种值估计的准确性。结果表明:随着ω的不断增加,SSGBLUP法用于内蒙古绒山羊绒毛性状的基因组育种值估计准确性越高。结合ABLUP和GBLUP的遗传参数估计结果可知,当τ为0.3、ω为0.9时,内蒙古绒山羊绒毛性状的基因组选择准确性较好。其中,绒长的准确性为0.7028,绒细准确性为0.6682,产绒量准确性为0.7131。对SSGBLUP方法的H矩阵选择合适的尺度参数可提高内蒙古绒山羊绒毛性状基因组育种值估计的准确性,加快种群的遗传改良,缩短世代间隔。展开更多
全基因组选择是新近开始在植物数量性状研究和植物育种中应用的一种分析方法。它以连锁不平衡为基础,利用BLUP(best linear unbiased prediction)分析方法准确估计某一群体每一遗传标记的育种值,从而只利用这些预测的育种值来进行选择...全基因组选择是新近开始在植物数量性状研究和植物育种中应用的一种分析方法。它以连锁不平衡为基础,利用BLUP(best linear unbiased prediction)分析方法准确估计某一群体每一遗传标记的育种值,从而只利用这些预测的育种值来进行选择。文章综述了全基因组选择的原理、方法以及全基因组选择在植物育种方面的研究进展,探讨各种因素对全基因组选择的影响,并讨论了全基因组选择在植物数量性状分子育种研究中可能的应用。展开更多
文摘为了对黄河鲤体质量性状进行全基因组关联分析及全基因组选择模型的预测准确性比较,采用鲤250K高密度SNP芯片对613尾黄河鲤(Cyprinus carpio)进行基因分型,并通过测定其体质量性状的表型信息进行全基因组关联分析,以及基于体质量性状、全基因组关联分析(genome-wide association study,GWAS)的不同变异数据集对GBLUP、贝叶斯、RKHS和机器学习模型等10种全基因组选择模型的预测准确性进行比较,以筛选出适用于黄河鲤体质量性状的全基因组选择模型。结果表明:通过GWAS定位到与体质量性状相关的5个SNP,位于1号和21号染色体上,进一步筛选关联SNP所在区域的基因,定位到WBP1L、GPM6B、TIMMDC1、RCAN1、EOGT基因;当选取与黄河鲤体质量性状表型相关的前100个SNP作为数据集,分析全基因组选择模型预测准确性时,机器学习模型XGBoost的预测准确性最高,为0.26,当SNP的数量分别为500、1000、3000、5000、20000时,GBLUP模型的准确性均最高,分别为0.3084、0.3444、0.4393、0.4526、0.4007,而XGBoost、LightGBM和GBLUP模型的变异系数则较低,说明模型预测的稳定性相对可靠。研究表明,本研究中共鉴定到5个与黄河鲤体质量性状相关的候选基因,分别为WBP1L、GPM6B、TIMMDC1、RCAN1、EOGT,10种全基因组选择模型中GBLUP模型的预测准确性最高,可用于黄河鲤体质量性状的基因组选育。
文摘为探究一步法基因组最佳线性无偏预测(SSGBLUP)法应用于内蒙古绒山羊育种的选择效果,本研究基于课题组前期积累的健康状况良好的内蒙古绒山羊(阿尔巴斯型)2256只个体的70 K SNP芯片测序数据,收集整理1至8岁个体的绒毛性状(绒长、绒细和产绒量)生产性能数据和系谱记录,通过设定SSGBLUP法中H逆矩阵的不同矩阵参数(ω,τ)进行基因组育种值估计,并利用五倍交叉验证法评价基因组育种值估计的准确性。结果表明:随着ω的不断增加,SSGBLUP法用于内蒙古绒山羊绒毛性状的基因组育种值估计准确性越高。结合ABLUP和GBLUP的遗传参数估计结果可知,当τ为0.3、ω为0.9时,内蒙古绒山羊绒毛性状的基因组选择准确性较好。其中,绒长的准确性为0.7028,绒细准确性为0.6682,产绒量准确性为0.7131。对SSGBLUP方法的H矩阵选择合适的尺度参数可提高内蒙古绒山羊绒毛性状基因组育种值估计的准确性,加快种群的遗传改良,缩短世代间隔。
文摘全基因组选择是新近开始在植物数量性状研究和植物育种中应用的一种分析方法。它以连锁不平衡为基础,利用BLUP(best linear unbiased prediction)分析方法准确估计某一群体每一遗传标记的育种值,从而只利用这些预测的育种值来进行选择。文章综述了全基因组选择的原理、方法以及全基因组选择在植物育种方面的研究进展,探讨各种因素对全基因组选择的影响,并讨论了全基因组选择在植物数量性状分子育种研究中可能的应用。