针对常规比例、积分和微分(proportional integral derivative,PID)控制器在无人艇航向控制系统中表现出的稳定性差、控制精度低等问题,文章提出一种将模糊控制与反向传播(back propagation,BP)神经网络相结合的控制算法;在MATLAB中对...针对常规比例、积分和微分(proportional integral derivative,PID)控制器在无人艇航向控制系统中表现出的稳定性差、控制精度低等问题,文章提出一种将模糊控制与反向传播(back propagation,BP)神经网络相结合的控制算法;在MATLAB中对比常规PID控制器、模糊PID控制器与模糊神经网络PID控制器在给定期望航向角下的航向控制性能,仿真结果表明模糊神经网络PID控制器对无人艇的航向控制性能最佳;在搭建的实验平台上对不同航向控制器下无人艇的航行轨迹和航向角进行比较,实验结果进一步验证了模糊神经网络PID航向控制算法的优越性。展开更多
针对空间光通信中跟踪系统的高精度、宽带宽要求,提出了一种基于PID神经元网络(Proportional integral differential neural network-PIDNN)的控制方案。采用MATLAB对所建立的跟踪系统模型进行了仿真分析研究,对采用PIDNN控制器的精跟...针对空间光通信中跟踪系统的高精度、宽带宽要求,提出了一种基于PID神经元网络(Proportional integral differential neural network-PIDNN)的控制方案。采用MATLAB对所建立的跟踪系统模型进行了仿真分析研究,对采用PIDNN控制器的精跟踪系统的在线训练能力及学习、调整功能进行了仿真验证,同时加入扰动源对精跟踪系统的稳态、动态性能及鲁棒性进行了仿真测试。仿真和测试结果表明:通过PIDNN控制的精跟踪系统具有良好的稳态及动态性能和很强的鲁棒性,系统跟踪精度高且系统带宽较宽。展开更多
为了提高深海大压力下微小波动压力的测量精度,文章介绍了一种新型的、基于液体可压缩性的、压力平衡式的活塞式压力传感器,针对该活塞式压力传感器压力控制系统存在的非线性、参数时变性以及时滞问题,提出将反向传播(back propagation,...为了提高深海大压力下微小波动压力的测量精度,文章介绍了一种新型的、基于液体可压缩性的、压力平衡式的活塞式压力传感器,针对该活塞式压力传感器压力控制系统存在的非线性、参数时变性以及时滞问题,提出将反向传播(back propagation,BP)神经网络与常规比例积分微分(proportional integral derivative,PID)相结合用于传感器的压力控制;设计BP神经网络PID控制器,利用BP神经网络的在线自学习能力对常规PID控制器的参数进行在线自动调节;在建立系统数学模型并进行Matlab仿真实验验证可行性后,搭建实物平台进行实验分析。阶跃实验结果表明,与常规PID控制相比,BP神经网络PID的调整时间和超调量均有所减小,其动态响应能力得到提高,表现出较好的自适应能力。展开更多
文摘针对常规比例、积分和微分(proportional integral derivative,PID)控制器在无人艇航向控制系统中表现出的稳定性差、控制精度低等问题,文章提出一种将模糊控制与反向传播(back propagation,BP)神经网络相结合的控制算法;在MATLAB中对比常规PID控制器、模糊PID控制器与模糊神经网络PID控制器在给定期望航向角下的航向控制性能,仿真结果表明模糊神经网络PID控制器对无人艇的航向控制性能最佳;在搭建的实验平台上对不同航向控制器下无人艇的航行轨迹和航向角进行比较,实验结果进一步验证了模糊神经网络PID航向控制算法的优越性。
文摘针对空间光通信中跟踪系统的高精度、宽带宽要求,提出了一种基于PID神经元网络(Proportional integral differential neural network-PIDNN)的控制方案。采用MATLAB对所建立的跟踪系统模型进行了仿真分析研究,对采用PIDNN控制器的精跟踪系统的在线训练能力及学习、调整功能进行了仿真验证,同时加入扰动源对精跟踪系统的稳态、动态性能及鲁棒性进行了仿真测试。仿真和测试结果表明:通过PIDNN控制的精跟踪系统具有良好的稳态及动态性能和很强的鲁棒性,系统跟踪精度高且系统带宽较宽。
文摘为了提高深海大压力下微小波动压力的测量精度,文章介绍了一种新型的、基于液体可压缩性的、压力平衡式的活塞式压力传感器,针对该活塞式压力传感器压力控制系统存在的非线性、参数时变性以及时滞问题,提出将反向传播(back propagation,BP)神经网络与常规比例积分微分(proportional integral derivative,PID)相结合用于传感器的压力控制;设计BP神经网络PID控制器,利用BP神经网络的在线自学习能力对常规PID控制器的参数进行在线自动调节;在建立系统数学模型并进行Matlab仿真实验验证可行性后,搭建实物平台进行实验分析。阶跃实验结果表明,与常规PID控制相比,BP神经网络PID的调整时间和超调量均有所减小,其动态响应能力得到提高,表现出较好的自适应能力。