主要研究三重零奇异的判定和在R^n上零特征根对应的广义特征空间,利用中心流形简化和规范型计算得到参数时滞微分方程的简化形式,对应于文[A note on the triple zero linear degeneracy:Normal forms,dynamical and bifurcation behavi...主要研究三重零奇异的判定和在R^n上零特征根对应的广义特征空间,利用中心流形简化和规范型计算得到参数时滞微分方程的简化形式,对应于文[A note on the triple zero linear degeneracy:Normal forms,dynamical and bifurcation behaviour of an unfolding.Int J Bifur and Chaos,2002,12:2799-2820]中的结果具体分析具有三重零奇异的参数时滞微分方程的分支行为,并给出一例子来阐述得到的结果.展开更多
在常方差弹性(constant elasticity of variance,CEV)模型下考虑了时滞最优投资与比例再保险问题.假设保险公司通过购买比例再保险对保险索赔风险进行管理,并将其财富投资于一个无风险资产和一个风险资产组成的金融市场,其中风险资产的...在常方差弹性(constant elasticity of variance,CEV)模型下考虑了时滞最优投资与比例再保险问题.假设保险公司通过购买比例再保险对保险索赔风险进行管理,并将其财富投资于一个无风险资产和一个风险资产组成的金融市场,其中风险资产的价格过程服从常方差弹性模型.考虑与历史业绩相关的现金流量,保险公司的财富过程由一个时滞随机微分方程刻画,在负指数效用最大化的目标下求解了时滞最优投资与再保险控制问题,分别在投资与再保险和纯投资两种情形下得到最优策略和值函数的解析表达式.最后通过数值算例进一步说明主要参数对最优策略和值函数的影响.展开更多
基金NSF of China (10671130)E-Institutes of Shanghai Municipal Education Commission (E03004)+2 种基金Shanghai Science and Technology Commission (06JC14092)Dawn Project of Shanghai Education Commission, Shanghai Leading Academic Discipline Project (T0401)Science Foundation of Shanghai (No. 04JC14062)
文摘主要研究三重零奇异的判定和在R^n上零特征根对应的广义特征空间,利用中心流形简化和规范型计算得到参数时滞微分方程的简化形式,对应于文[A note on the triple zero linear degeneracy:Normal forms,dynamical and bifurcation behaviour of an unfolding.Int J Bifur and Chaos,2002,12:2799-2820]中的结果具体分析具有三重零奇异的参数时滞微分方程的分支行为,并给出一例子来阐述得到的结果.
基金Supported by University Science Research Key Project of Anhui Province(KJ2018A0565)Fostering Master’s Degree Empowerment Point Project of Hefei University(2018xs03)+1 种基金Major Project of Humanities and Social Sciences of Anhui Province(SK2019ZD55)Operational Research High-Level Teaching Team of Anhui Province(2018jxtd049)
文摘在常方差弹性(constant elasticity of variance,CEV)模型下考虑了时滞最优投资与比例再保险问题.假设保险公司通过购买比例再保险对保险索赔风险进行管理,并将其财富投资于一个无风险资产和一个风险资产组成的金融市场,其中风险资产的价格过程服从常方差弹性模型.考虑与历史业绩相关的现金流量,保险公司的财富过程由一个时滞随机微分方程刻画,在负指数效用最大化的目标下求解了时滞最优投资与再保险控制问题,分别在投资与再保险和纯投资两种情形下得到最优策略和值函数的解析表达式.最后通过数值算例进一步说明主要参数对最优策略和值函数的影响.