提出了种应用于飞轮储能系统的神经元自适应比例?积分?微分(proportional integral differential,PID)控制算法。该算法基于传统的双闭环调速系统与神经网络理论,实现对飞轮驱动电机的控制,使飞轮驱动电机能够根据系统要求,驱动飞轮储...提出了种应用于飞轮储能系统的神经元自适应比例?积分?微分(proportional integral differential,PID)控制算法。该算法基于传统的双闭环调速系统与神经网络理论,实现对飞轮驱动电机的控制,使飞轮驱动电机能够根据系统要求,驱动飞轮储能单元储存或释放能量。运用李亚普诺夫稳定性理论证明了该控制算法的稳定性和有效性,并给出了其稳定性条件。经过仿真验证,该算法可以有效地实现对飞轮储能单元的充放电控制,其控制参数可以随着系统的运行自适应调节,飞轮储能单元的控制精度和鲁棒性也有所提高。展开更多
天线伺服控制系统是通信系统的重要组成部分。天线伺服控制的稳定性和快速性直接影响通信质量的好坏。针对某一船站天线系统,在设计模糊自适应比例-积分-微分(Proportional Integral Derivative,PID)控制器的基础上,进行多模态控制系统...天线伺服控制系统是通信系统的重要组成部分。天线伺服控制的稳定性和快速性直接影响通信质量的好坏。针对某一船站天线系统,在设计模糊自适应比例-积分-微分(Proportional Integral Derivative,PID)控制器的基础上,进行多模态控制系统设计。通过设计一个切换阀值,将大比例控制、超前滞后控制、模糊自适应PID控制组合在一起。当位置误差较大时,用大比例控制,位置误差适中时用超前滞后控制,当误差小于一个阀值时,采用模糊自适应PID控制。多模态控制阶跃响应曲线前面一段用比例控制,响应速度更快,中间位置切换到超前滞后控制那段,避免超调震荡,最后段用模糊自适应PID控制,稳态误差小。利用Matlab进行仿真,仿真结果显示多模态控制能够得到比单一控制更好的动态响应性能。展开更多
介绍某电厂2×300MW循环流化床机组无旁路烟气脱硫(flue gas desulfurization,FGD)系统中石灰石浆液箱液位、石灰石浆液密度、吸收塔浆液pH值的控制方案,阐述传递函数的求取和比例积分微分(proportionalplus integral plus derivati...介绍某电厂2×300MW循环流化床机组无旁路烟气脱硫(flue gas desulfurization,FGD)系统中石灰石浆液箱液位、石灰石浆液密度、吸收塔浆液pH值的控制方案,阐述传递函数的求取和比例积分微分(proportionalplus integral plus derivative,PID)控制参数的整定过程,并运用MATLAB软件对计算出的PID控制参数进行仿真,经仿真确认后应用到实际FGD控制系统中,能达到有效控制SO2排放的目的。展开更多
文摘提出了种应用于飞轮储能系统的神经元自适应比例?积分?微分(proportional integral differential,PID)控制算法。该算法基于传统的双闭环调速系统与神经网络理论,实现对飞轮驱动电机的控制,使飞轮驱动电机能够根据系统要求,驱动飞轮储能单元储存或释放能量。运用李亚普诺夫稳定性理论证明了该控制算法的稳定性和有效性,并给出了其稳定性条件。经过仿真验证,该算法可以有效地实现对飞轮储能单元的充放电控制,其控制参数可以随着系统的运行自适应调节,飞轮储能单元的控制精度和鲁棒性也有所提高。
文摘天线伺服控制系统是通信系统的重要组成部分。天线伺服控制的稳定性和快速性直接影响通信质量的好坏。针对某一船站天线系统,在设计模糊自适应比例-积分-微分(Proportional Integral Derivative,PID)控制器的基础上,进行多模态控制系统设计。通过设计一个切换阀值,将大比例控制、超前滞后控制、模糊自适应PID控制组合在一起。当位置误差较大时,用大比例控制,位置误差适中时用超前滞后控制,当误差小于一个阀值时,采用模糊自适应PID控制。多模态控制阶跃响应曲线前面一段用比例控制,响应速度更快,中间位置切换到超前滞后控制那段,避免超调震荡,最后段用模糊自适应PID控制,稳态误差小。利用Matlab进行仿真,仿真结果显示多模态控制能够得到比单一控制更好的动态响应性能。
文摘介绍某电厂2×300MW循环流化床机组无旁路烟气脱硫(flue gas desulfurization,FGD)系统中石灰石浆液箱液位、石灰石浆液密度、吸收塔浆液pH值的控制方案,阐述传递函数的求取和比例积分微分(proportionalplus integral plus derivative,PID)控制参数的整定过程,并运用MATLAB软件对计算出的PID控制参数进行仿真,经仿真确认后应用到实际FGD控制系统中,能达到有效控制SO2排放的目的。