期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
深度残差网络模型的构建及其在糖尿病预测中的应用 被引量:1
1
作者 左星光 范静 《现代电子技术》 2022年第15期30-35,共6页
为提高糖尿病预测准确率和精度,针对糖尿病数据特性,构建由全连接层组成的深度残差网络。在残差块中加入批量标准化层,去除了Dropout层,进而确定了各层的排列顺序。分别使用3种不同激活函数和4种不同的优化算法时,对比深度残差网络的准... 为提高糖尿病预测准确率和精度,针对糖尿病数据特性,构建由全连接层组成的深度残差网络。在残差块中加入批量标准化层,去除了Dropout层,进而确定了各层的排列顺序。分别使用3种不同激活函数和4种不同的优化算法时,对比深度残差网络的准确率、精度、召回值、F1值和平均准确率等评价指标值,进而选择Tanh作为模型激活函数,自适应矩估计(Adam)作为模型优化算法。采用梯度提升树算法选取影响糖尿病的主要特征,针对UCI糖尿病原始数据集和样本均衡数据集,将深度残差网络与随机森林模型、朴素贝叶斯模型、决策树模型、支持向量机模型、逻辑回归模型进行对比分析。预测结果表明,深度残差网络优于全连接神经网络;对于原始数据集和样本均衡数据集,深度残差网络模型的准确率和精度均优于相比较的其余5种预测模型。 展开更多
关键词 糖尿病预测 深度残差网络模型 神经网络 全连接层 激活函数 优化算法 准确率 精度
在线阅读 下载PDF
残差神经网络模型在木质板材缺陷分类中的应用 被引量:4
2
作者 凌嘉欣 谢永华 《东北林业大学学报》 CSCD 北大核心 2021年第8期111-116,共6页
以虫眼、活节、死节3种缺陷的板材为研究对象,建立了小型样本库,采用数据增强方法,对图片进行旋转、平移、尺度变换、灰度变换等方式处理,使样本库扩容到10687张图片,其中7480张图片作为训练集、2137张图片作为验证集、1070张图片作为... 以虫眼、活节、死节3种缺陷的板材为研究对象,建立了小型样本库,采用数据增强方法,对图片进行旋转、平移、尺度变换、灰度变换等方式处理,使样本库扩容到10687张图片,其中7480张图片作为训练集、2137张图片作为验证集、1070张图片作为测试集;应用超分辨率测试序列(VGG)网络模型、谷歌网络模型(GoogLeNet)、残差神经网络模型(ResNet)对木质板材表面缺陷进行分类,依据分类精度,遴选识别效果较好的木质板材缺陷分类方法。结果表明:残差神经网络模型在不同的卷积层时分类精度均在80%以上,而改进的残差神经网络模型在模型结构为50层时的分类准确率高达98.63%,模型能较好地适用于木质板材表面缺陷分类。 展开更多
关键词 木质板材缺陷 木材缺陷分类方法 残差神经网络模型
在线阅读 下载PDF
基于特征融合的轻量级新残差人脸识别方法 被引量:1
3
作者 惠康华 闫建青 +1 位作者 高思华 贺怀清 《电子学报》 EI CAS CSCD 北大核心 2024年第3期937-944,共8页
针对现有轻量级模型在嵌入式设备的人脸识别应用中存在识别精度难以提升的问题,提出一种融合人脸对齐关键特征点信息的轻量级新残差网络模型(Lightweight New Residual Network,LNRN).LNRN利用深度残差网络结构能够解决网络退化且避免... 针对现有轻量级模型在嵌入式设备的人脸识别应用中存在识别精度难以提升的问题,提出一种融合人脸对齐关键特征点信息的轻量级新残差网络模型(Lightweight New Residual Network,LNRN).LNRN利用深度残差网络结构能够解决网络退化且避免干扰因素影响的优势,结合人脸对齐环节产生的关键特征点信息,对深度残差网络结构进行简化和合理设计,实现对关键特征信息和全局信息的提取.为避免特征提取过程中丢失重要特征信息,该模型在新残差网络中加入结合空间和通道的注意力机制进行辅助.在公开的四个标准人脸数据集上的仿真实验表明,该模型识别速度在接近主流轻量级人脸识别方法的同时,平均识别精度比MobiFace提高了0.6%. 展开更多
关键词 轻量级新残差网络模型 人脸识别 关键特征信息 注意力机制
在线阅读 下载PDF
基于仿真数据和子领域自适应的轴承故障网络诊断框架
4
作者 韩洁 苏小平 康正阳 《机电工程》 北大核心 2024年第1期115-122,共8页
在实际工业环境中,往往缺乏相应工况的轴承故障数据用于模型训练,这限制了深度学习在工业场景中的应用。基于此,采用两种建模方式生成了轴承故障信号,将其用于训练模型,并利用深度子领域自适应方法,缩小了模拟信号和真实信号间的差异,... 在实际工业环境中,往往缺乏相应工况的轴承故障数据用于模型训练,这限制了深度学习在工业场景中的应用。基于此,采用两种建模方式生成了轴承故障信号,将其用于训练模型,并利用深度子领域自适应方法,缩小了模拟信号和真实信号间的差异,提升了模型对真实信号的诊断精度。首先,采用数学建模和基于LS-DYNA的有限元仿真两种方式建立了轴承故障仿真模型,以获取与实际场景相同工况下的轴承故障仿真加速度信号;其次,针对仿真数据和真实数据存在差异的问题,利用子领域自适应方法得到了对齐仿真数据和实际数据的全局特征分布以及相关子领域的特征分布;最后,采用原始一维振动信号作为输入,在残差神经网络(ResNet)模型架构上完成了端到端的轴承故障分类工作;将德国帕德博恩大学采集到的轴承故障信号作为实验数据,对上述模型的有效性进行了验证。研究结果表明:相较于有限元仿真,数学建模生成的仿真信号能够较轻易地迁移到实际信号,在无标签数据场景下具有99.73%的轴承故障识别精度,体现了数学建模在无监督轴承故障诊断领域的广阔应用前景,是在真实工业系统和人工智能之间架起桥梁的关键技术。 展开更多
关键词 轴承故障数据 数学建模 LS-DYNA有限元仿真 子领域自适应 残差神经网络(ResNet)模型 迁移学习能力
在线阅读 下载PDF
基于注意力卷积长短时记忆模型的城市出租车流量预测
5
作者 周新民 金江涛 +2 位作者 鲍娜娜 袁涛 崔烨 《中国安全科学学报》 CAS CSCD 北大核心 2024年第7期153-162,共10页
为解决城市交通拥堵和安全问题,提出一种注意力卷积长短时记忆(ConvLSTM)残差(ACLR)模型,该模型通过结合ConvLSTM、注意力机制和残差结构,分别处理出租车流量的时间、空间、和其他特征,挖掘区域兴趣点(POI)数据对出租车流量的影响,有效... 为解决城市交通拥堵和安全问题,提出一种注意力卷积长短时记忆(ConvLSTM)残差(ACLR)模型,该模型通过结合ConvLSTM、注意力机制和残差结构,分别处理出租车流量的时间、空间、和其他特征,挖掘区域兴趣点(POI)数据对出租车流量的影响,有效提升交通时空特征的提取能力。同时,引入专门的学习元件考虑外部因素和POI密度对交通流量的影响,并利用北京市出租车轨迹数据验证。结果表明:ACLR模型在城市交通流预测中的精度高于差分自回归滑动平均(ARIMA)模型、长短时记忆(LSTM)网络、深度时空残差网络(ST-ResNet)、卷积神经网络(CNN)-残差神经单元-LSTM(CRL)循环神经网络、ACFM等模型,在无POI密度和考虑POI密度的情况下,均有助于提升模型的预测性能,ACLA模型的预测值与真实值基本一致,高峰时段也能与真实值较好地吻合,有效提升交通时空特征的提取能力,降低预测误差,使得交通流量预测性能得到优化。 展开更多
关键词 注意力卷积长短时记忆残差网络(ACLR)模型 交通流量预测 城市出租车 时空特征 残差结构
在线阅读 下载PDF
农产品市场监测预警深度学习智能预测方法 被引量:1
6
作者 许世卫 李乾川 +3 位作者 栾汝朋 庄家煜 刘佳佳 熊露 《智慧农业(中英文)》 2025年第1期57-69,共13页
[目的/意义]农产品供给、消费和价格的变化直接影响市场监测和预警。随着中国农业生产方式和市场体系的转型,数据获取技术的进步使得农业数据呈现爆炸式增长。然而,农产品多品种的联动监测和预测仍面临数据复杂、模型狭窄、应变能力弱... [目的/意义]农产品供给、消费和价格的变化直接影响市场监测和预警。随着中国农业生产方式和市场体系的转型,数据获取技术的进步使得农业数据呈现爆炸式增长。然而,农产品多品种的联动监测和预测仍面临数据复杂、模型狭窄、应变能力弱等挑战。因此,亟需构建适应中国农业数据特点的深度学习模型,以提升农产品市场的监测与预警能力,推动精准决策和应急响应。[方法]本研究应用深度学习方法,从中国多维农业数据资源实际出发,创新提出了一套不同监测预警对象条件下深度学习综合预测方法,构建了生成对抗与残差网络协同生产量模型(Generative Adversarial Network and Residual Network, GAN-ResNet)、变分自编码器岭回归消费预测模型(Variational Autoencoder and Ridge Regression, VAE-Ridge)、自适应变换器价格预测模型(Adaptive-Transformer)。为适应实际需求,研究在CAMES中采用“离线计算与可视化分离”策略,模型推理离线完成,平衡了计算复杂度与实时预警需求。[结果和讨论]深度学习综合预测方法在玉米单产、生猪消费量和番茄市场价格的预测上,均表现出显著的精度提升。GAN-ResNet生产量预测模型进行县级尺度玉米单产预测的平均绝对百分比误差(Mean Absolute Percentage Error, MAPE)为6.58%,运用VAE-Ridge模型分析生猪消费量的MAPE为6.28%,运用Adaptive-Transformer模型预测番茄价格的MAPE为2.25%。[结论]该研究提出的深度学习综合预测方法,具有较先进的单品种、多场景、宽条件下的农产品市场监测预警分析能力,并在处理不同区域多维数据、多品种替代、市场季节性波动等分析方面显示出优良的指标性能,可为中国农产品市场监测预警提供一套新的有效分析方法。 展开更多
关键词 监测预警 深度学习 生产量预测 消费量预测 价格预测 生成对抗与残差网络协同生产量模型 变分自编码器岭回归消费预测模型 自适应变换器价格预测模型
在线阅读 下载PDF
面向触觉识别的神经结构搜索算法
7
作者 邹子超 李玉良 +1 位作者 陈萌 马飞红 《哈尔滨工程大学学报》 北大核心 2025年第6期1209-1217,共9页
针对手工设计神经网络需要耗费一定时间和精力的问题,本文提出了一种基于自学习遗传算法的两级式神经结构搜索算法,并应用于触觉识别领域。设计了一种自学习遗传算法,利用强化学习优化遗传算法的选择、交叉和变异算子,以求遗传算法加速... 针对手工设计神经网络需要耗费一定时间和精力的问题,本文提出了一种基于自学习遗传算法的两级式神经结构搜索算法,并应用于触觉识别领域。设计了一种自学习遗传算法,利用强化学习优化遗传算法的选择、交叉和变异算子,以求遗传算法加速收敛,并在陷入局部最优时跳出局部最优;基于自学习遗传算法,提出了两级式神经网络结构搜索算法,用于搜索适合处理触觉时序数据的卷积神经网络和循环神经网络串联模型,且为卷积神经网络和循环神经网络模块引入了层间残差连接以解决网络退化问题,并使用公开触觉数据集对算法进行了实验验证。自建包含22类实验样品的触觉数据集,基于数据集进行了搜索算法实验,并对搜索得到的最优网络进行了分类识别测试,识别准确率为96.81%,与长短期记忆网络、门控循环单元网络和卷积神经网络与长短记忆网络串联模型进行对比,对比结果显示:本文搜索算法搜索出的网络性能更加优异,识别率更高,进一步证明了算法的有效性。 展开更多
关键词 神经网络结构搜索 触觉识别 强化学习 遗传算法 卷积神经网络和循环神经网络串联模型 触觉传感器 卷积神经网络与循环神经网络串联模型 层间残差连接循环神经网络模型
在线阅读 下载PDF
基于深度学习特征预测无传统影像学征象的自发性脑出血患者早期血肿扩大
8
作者 卢万俊 彭剑 +3 位作者 袁梦轩 高丽清 沈洁玲 孙成团 《中国医学影像学杂志》 CSCD 北大核心 2024年第12期1215-1221,共7页
目的 探讨基于ResNet50深度残差网络模型的深度学习特征预测无传统影像学征象的自发性脑出血患者早期血肿扩大的价值。资料与方法 回顾性分析扬州大学附属江都人民医院2019年1月—2022年12月发病6 h内完成首次平扫颅脑CT,且入院后24 h... 目的 探讨基于ResNet50深度残差网络模型的深度学习特征预测无传统影像学征象的自发性脑出血患者早期血肿扩大的价值。资料与方法 回顾性分析扬州大学附属江都人民医院2019年1月—2022年12月发病6 h内完成首次平扫颅脑CT,且入院后24 h内复查平扫颅脑CT的自发性脑出血患者235例,按8∶2随机将患者分为训练集188例与测试集47例。在首次平扫颅脑CT上逐层勾画血肿感兴趣区提取影像组学特征。裁剪出最大二维横截面及其上下1 mm和2 mm处二维横截面的感兴趣区图像,输入ResNet50模型行预训练,提取平均池化层的深度学习特征,并将影像组学特征与深度学习特征融合。通过最小绝对收缩与选择算子回归模型分别筛选出最优的影像组学特征、深度学习特征和融合特征,采用支持向量机分类器构建预测模型。使用受试者工作特征曲线和决策曲线分析评价模型效能。结果 在训练集中,深度学习特征模型曲线下面积(AUC)为0.972,高于影像组学特征模型(0.951)和融合特征模型(0.968),差异均无统计学意义(P>0.05)。在测试集中,深度学习特征模型和融合特征模型AUC分别为0.867和0.895,显著高于影像组学特征模型(0.833),差异有统计学意义(Z=1.794、2.191,P<0.05);融合特征模型AUC较深度学习特征模型有所增益,但差异无统计学意义(P>0.05)。在测试集中,决策曲线分析显示融合特征模型获益优于深度学习特征模型和影像组学特征模型。结论 基于ResNet50深度学习特征模型预测早期血肿扩大表现优于影像组学特征模型,而融合特征模型对其预测血肿扩大有增益作用,为临床决策提供一种具有超视觉评估能力的预测工具。 展开更多
关键词 自发性脑出血 血肿扩大 深度学习 影像组学 预测 深度残差网络模型
在线阅读 下载PDF
基于深度学习的牙刷姿态识别方法 被引量:2
9
作者 王化明 刘茂兴 +1 位作者 熊峻峰 于金龙 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2021年第3期298-302,共5页
针对牙刷分拣中的定位问题,在确定牙刷位置的基础上采用深度学习实现牙刷姿态识别.对牙刷图像进行去噪增强,通过阈值分割提取感兴趣区域,计算图像的几何矩获得牙刷的方向角和外接矩形,以外接矩形的中心作为牙刷位置.用矩形框内的牙刷图... 针对牙刷分拣中的定位问题,在确定牙刷位置的基础上采用深度学习实现牙刷姿态识别.对牙刷图像进行去噪增强,通过阈值分割提取感兴趣区域,计算图像的几何矩获得牙刷的方向角和外接矩形,以外接矩形的中心作为牙刷位置.用矩形框内的牙刷图像训练残差网络模型,当模型正确率达到要求时保存该模型,用于判断图像中牙刷的姿态.测试结果表明,该方法可以快速准确地实现牙刷的位置确定与姿态识别,为机器人分拣提供牙刷位姿信息. 展开更多
关键词 牙刷分拣 姿态识别 几何矩 深度学习 残差网络模型
在线阅读 下载PDF
基于SE模块和ResNet的番茄病虫害识别方法 被引量:11
10
作者 胡文艺 王洪坤 杜育佳 《农业工程》 2022年第9期33-40,共8页
番茄病虫害是引起番茄减产的重要因素。精确识别病虫害种类是当前国际热点问题之一,有助于及时有效采取针对性的病虫防治办法,减少和避免因番茄减产导致的经济损失。针对传统虫害识别方法存在效率和精确率低的问题,利用Kaggle网站上的To... 番茄病虫害是引起番茄减产的重要因素。精确识别病虫害种类是当前国际热点问题之一,有助于及时有效采取针对性的病虫防治办法,减少和避免因番茄减产导致的经济损失。针对传统虫害识别方法存在效率和精确率低的问题,利用Kaggle网站上的Tomato数据集,构建基于压缩和激励(SE)模块的深度残差网络模型(ResNet),优化番茄病虫害识别方法。结果表明:通过Pytorch框架下的迁移学习,改进后的网络模型对番茄病虫害图像的平均识别准确率最高为97.96%;基于SE模块的ResNet网络模型有助于增强特征区分能力,增加模型的通用性和鲁棒性。研究结果对番茄病虫害的及时监测和处理、提高番茄产量具有重要意义。 展开更多
关键词 番茄 病虫害识别 迁移学习 压缩和激励模块 深度残差网络模型 Pytorch
在线阅读 下载PDF
多感知兴趣区域特征融合的图像识别方法 被引量:8
11
作者 闫涵 张旭秀 张净丹 《智能系统学报》 CSCD 北大核心 2021年第2期263-270,共8页
针对自然图像识别过程中不同深度学习模型关注兴趣区域不同的现象,本文引入深度卷积神经网络融合机制,结合深度迁移学习方法,给出了一种基于多感知兴趣区域特征融合的图像识别方法。本文将迁移学习方法引入牛津大学视觉组网络模型(visua... 针对自然图像识别过程中不同深度学习模型关注兴趣区域不同的现象,本文引入深度卷积神经网络融合机制,结合深度迁移学习方法,给出了一种基于多感知兴趣区域特征融合的图像识别方法。本文将迁移学习方法引入牛津大学视觉组网络模型(visual geometry group network,VGGNet)和残差网络模型(residual network,ResNet),通过对单个分类模型进行热力图可视化及特征可视化,得到了不同网络模型关联的特征区域不一样的结论。然后在此基础上分别设计特征拼接、特征融合加特征拼接及融合投票方法将不同模型特征进行融合,得到3种新的融合模型。实验结果表明,本文方法在Kaggle数据集上的识别准确率高于VGG-16、VGG-19、ResNet-50、DenseNet-201模型。 展开更多
关键词 深度学习 图像识别 迁移学习 特征融合 集成学习 特征提取 CAM可视化 视觉组网络模型 残差网络模型
在线阅读 下载PDF
基于注意力机制与深度学习算法的机床主轴系统故障辨识 被引量:3
12
作者 王伟平 王琦 于洋 《兵工学报》 EI CAS CSCD 北大核心 2022年第4期861-875,共15页
针对具有复杂非线性特点的数控机床主轴系统整体动态退化故障较难辨识及故障研究难度大的问题,从数据分析入手,提出一种基于注意力机制与深度学习算法的智能化故障辨识方法,研究机床主轴系统的整体故障辨识问题。该方法设计了注意力机... 针对具有复杂非线性特点的数控机床主轴系统整体动态退化故障较难辨识及故障研究难度大的问题,从数据分析入手,提出一种基于注意力机制与深度学习算法的智能化故障辨识方法,研究机床主轴系统的整体故障辨识问题。该方法设计了注意力机制的研究框架,将研究问题分为全局纵向大分类区间和局部横向细粒度区间两个维度:采用训练并调优后推理平均绝对误差达到0.028 7的门控循环单元模型,辨识出大分类区间的全局性退化故障;采用鲁棒性强且辨识准确率达99.7%的残差网络模型,在sym8小波基自适应软阈值降噪的基础上对局部细粒度区间故障进行准确细节辨识。结果表明:该方法可量化地辨识出主轴系统的整体故障;所提注意力机制可使大分类区间无法准确辨识的故障在细粒度区间得到有效区分,类内数据增长梯度由6.6%增加到43.8%;通过对机床主轴系统实际使用中在空载状态下遇到的不对中和局部共振等典型故障,以及在负载加工状态下故障的辨识研究,验证了所提方法的有效性与准确性。 展开更多
关键词 机床主轴系统 故障辨识 注意力机制 门控循环单元模型 残差网络模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部