期刊文献+
共找到2,111篇文章
< 1 2 106 >
每页显示 20 50 100
基于残差分组卷积神经网络和多级注意力机制的源荷极端场景辨识方法 被引量:1
1
作者 郭红霞 李渊 +2 位作者 陈凌轩 王建学 马骞 《电网技术》 北大核心 2025年第2期459-469,I0019-I0024,共17页
为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方... 为应对极端天气事件给新型电力系统安全稳定运行带来的影响,在电网的生产模拟中需要考虑极端场景。然而极端场景历史样本数量少,传统场景生成方法无法直接生成极端场景,需要对场景进行辨识。为此,提出一种计及源荷双侧的极端场景辨识方法。首先,将风电、光伏和负荷序列进行重塑,并在通道维度上拼接;然后,基于分组卷积和深度残差网络,提取场景的时序特征和源荷场景之间的耦合特征;其次,模型内部嵌入通道注意力机制和多头注意力机制,以赋予重要特征更大的权重,并对场景进行分类;此外,采用改进损失函数解决训练样本中数据集不均衡的问题;最后,基于历史数据集进行验证。验证结果表明,所提方法能够对场景进行有效的分类,可以从历史场景中识别出具有高保供或高消纳风险的源荷极端场景。 展开更多
关键词 极端场景辨识 残差神经网络 分组卷积 注意力机制 源荷不确定性
在线阅读 下载PDF
多注意力残差脉冲神经网络的接地网故障诊断 被引量:2
2
作者 闫孝姮 丁一凡 +1 位作者 陈伟华 张雪 《电子测量与仪器学报》 北大核心 2025年第3期77-91,共15页
针对目前接地网故障诊断方法效果单一与非智能化的问题,提出了一种多注意力残差脉冲神经网络(MAR-SNN)的接地网故障诊断方法。首先,创建用于训练的接地网数据集,通过对电阻抗成像技术(EIT)网格大小的重新剖分,提高成像速度,并利用局部... 针对目前接地网故障诊断方法效果单一与非智能化的问题,提出了一种多注意力残差脉冲神经网络(MAR-SNN)的接地网故障诊断方法。首先,创建用于训练的接地网数据集,通过对电阻抗成像技术(EIT)网格大小的重新剖分,提高成像速度,并利用局部自适应对比度增强方法,增强不同故障等级间的图像特征;其次,利用所提出的多注意力脉冲残差块,构建MAR-SNN模型,实现对接地网故障等级的识别任务,该残差模块通过在两次脉冲神经元后进行身份映射,同时引入多注意力机制,并采用参数-泄露-积分-触发脉冲神经元与批归一化层,分别提升模型识别准确率;最后,利用EIT与训练好的MAR-SNN模型,建立对接地网故障的智能诊断模型。模型对比分析结果表明,MAR-SNN在接地网智能故障诊断中的效果优于现有先进模型,在测试集中准确率可达96.31%,其中在轻、中腐蚀程度下的准确率可达100%、97.20%;同时实验结果证明,所提方法可以完成对接地网故障检测与等级识别的综合诊断任务,实现对接地网的智能故障诊断,验证了该方法的有效性与可行性。 展开更多
关键词 接地网智能故障诊断 多注意力残差 脉冲神经网络 电阻抗成像技术 对比度增强
在线阅读 下载PDF
结合图同构和混合阶残差门控图神经网络的会话推荐 被引量:1
3
作者 王永贵 于琦 《计算机科学与探索》 北大核心 2025年第2期502-512,共11页
基于会话推荐的目的是依据当前会话的先前动作来预测用户的下一个动作。针对现有基于图神经网络的会话推荐模型存在的不足之处,提出一种结合图同构和混合阶残差门控图神经网络的会话推荐模型(GIHR-GNN)。使用图同构网络聚合相邻项目的... 基于会话推荐的目的是依据当前会话的先前动作来预测用户的下一个动作。针对现有基于图神经网络的会话推荐模型存在的不足之处,提出一种结合图同构和混合阶残差门控图神经网络的会话推荐模型(GIHR-GNN)。使用图同构网络聚合相邻项目的特征向量,有效融合全局和局部信息,解决图神经网络善于捕获节点之间的局部连接而忽略全局信息的问题,并通过门控融合函数聚合用户的长短期兴趣以更好地捕捉用户兴趣的动态变化。使用混合阶门控图神经网络对位置嵌入向量进行处理以捕获用户长时间后重新交互所反映出的用户意图,并在此基础之上添加残差模块,解决深层网络的退化问题。将未去噪和去噪后的用户长期兴趣表示进行对比学习,缓解了数据稀疏和噪声干扰的问题。在Tmall和RetailRocket两个数据集上进行多次实验,并与先进基线模型进行比较,结果表明该模型在Tmall数据集上P@20指标和MRR@20指标至少提升了3.26%和10.33%,在RetailRocket数据集上P@20指标和MRR@20指标至少提升了0.55%和2.57%,证明了GIHR-GNN模型的有效性。 展开更多
关键词 会话推荐 图同构网络 混合阶残差门控图神经网络 对比学习
在线阅读 下载PDF
一种自适应残差卷积自编码网络及其故障诊断应用
4
作者 潘天成 陈龙 +1 位作者 蒲春雷 陈志强 《机电工程》 北大核心 2025年第3期529-538,共10页
针对传统卷积自编码器(CAE)会将不同故障产生的相似信号进行相同的非线性变换,导致故障诊断准确率下降的问题,提出了一种自适应残差卷积自编码网络(ARCAE),并将其应用于滚动轴承故障诊断中。首先,在残差模块的基础上,引入了自适应参数... 针对传统卷积自编码器(CAE)会将不同故障产生的相似信号进行相同的非线性变换,导致故障诊断准确率下降的问题,提出了一种自适应残差卷积自编码网络(ARCAE),并将其应用于滚动轴承故障诊断中。首先,在残差模块的基础上,引入了自适应参数化修正线性单元(APReLU),建立了自适应残差模块(ARM),ARM可以对相似的输入特征进行自适应非线性变换,避免了特征的错误识别;其次,在CAE中嵌入多级ARM,构建了ARCAE,增加了CAE的深度,提取了更具鉴别性的深层次特征,同时有效防止了网络加深而造成的性能退化;最后,基于ARCAE建立了针对一维信号的故障诊断新方法,将其应用于无监督滚动轴承故障诊断中,并通过两个不同类型的实验,对上述方法的有效性进行了验证。研究结果表明:在恒定转速工况下,ARCAE的诊断准确率最高,平均准确率达到了97.05%,且标准差仅为0.007,远低于其他几种传统CAE网络;在变转速工况下,ARCAE模型诊断准确率仍然是最高的,平均准确率达到了93.25%,由此说明ARCAE具有较高的特征提取能力和分类准确率;此外,变转速工况下,由于转速变化导致不同状态的振动信号特征差异变大,诊断难度加大,但与其他几种传统CAE网络相比,ARCAE诊断准确率下降最少,仅为5.37%,说明ARCAE具有更强的鲁棒性和稳定性。 展开更多
关键词 滚动轴承 自适应残差卷积自编码网络 自适应参数化修正线性单元 自适应残差模块 无监督故障诊断 特征提取
在线阅读 下载PDF
基于级联残差图卷积网络的多行为推荐
5
作者 党伟超 宋楚君 +1 位作者 高改梅 刘春霞 《计算机应用》 北大核心 2025年第4期1223-1231,共9页
针对多行为推荐研究中存在的数据稀疏和忽视多行为之间复杂联系的问题,提出一种基于级联残差图卷积网络的多行为推荐(CRMBR)模型。首先,从由所有行为的相互作用构建的统一同构图中学习用户和项目的全局嵌入,并将这些嵌入用作初始化嵌入... 针对多行为推荐研究中存在的数据稀疏和忽视多行为之间复杂联系的问题,提出一种基于级联残差图卷积网络的多行为推荐(CRMBR)模型。首先,从由所有行为的相互作用构建的统一同构图中学习用户和项目的全局嵌入,并将这些嵌入用作初始化嵌入;其次,通过级联残差块捕获不同行为之间的联系,以不断细化不同类型行为的嵌入,从而完善用户偏好;最后,通过2种不同的聚合策略分别聚合用户和项目嵌入,并采用多任务学习(MTL)优化这些嵌入。在多个真实数据集上的实验结果表明,CRMBR模型的推荐性能优于目前的主流模型。与先进的基准模型——多行为分层图卷积网络(MB-HGCN)相比,在Tmall数据集上,所提模型的命中率(HR@20)和归一化折损累积增益(NDCG@20)分别提升了3.1%和3.9%;在Beibei数据集上,则分别提升了15.8%和16.9%;在Jdata数据集上,则分别提升了1.0%和3.3%,验证了所提模型的有效性。 展开更多
关键词 多行为推荐 级联残差 图卷积网络 聚合策略 多任务学习
在线阅读 下载PDF
融合深度残差网络与注意力机制的驾驶人行为检测方法研究
6
作者 陈运星 崔军华 +2 位作者 吴钊 吴华伟 袁星宇 《重庆理工大学学报(自然科学)》 北大核心 2025年第3期34-42,共9页
为提高驾驶人行为检测的准确性及模型的可解释性,提出了一种融合深度残差网络与注意力机制的驾驶人行为检测模型。利用深度残差网络提取特征模块的优势,对比不同层数的网络模型结果,选取合适的网络模型作为基础网络;为剔除无用信息对驾... 为提高驾驶人行为检测的准确性及模型的可解释性,提出了一种融合深度残差网络与注意力机制的驾驶人行为检测模型。利用深度残差网络提取特征模块的优势,对比不同层数的网络模型结果,选取合适的网络模型作为基础网络;为剔除无用信息对驾驶行为的干扰,引入SE Block注意力机制并对图像进行特征提取和分类预测;通过与其他模型的对比试验、消融试验和特征可视化试验验证所提出模型的性能。结果表明:与其他检测模型相比,所提出模型的平均分类准确率为99.89%,其展现出更优的性能;采用Grad-CAM可视化方法解释模型的关注区域,所提出模型更精准地关注对驾驶行为判定的关键特征,进一步增强了本模型的可解释性,提高了人们对驾驶行为检测模型的信任性。 展开更多
关键词 深度学习 驾驶人行为检测 深度残差网络 注意力机制 神经网络可视化
在线阅读 下载PDF
基于先验驱动残差注意力网络的阵元故障MIMO雷达DOA估计
7
作者 陈金立 周龙 +1 位作者 李家强 姚昌华 《电讯技术》 北大核心 2025年第5期674-683,共10页
受恶劣电磁环境和元器件老化等因素影响,多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达的天线阵元发生故障的概率增加,而阵元故障会严重降低目标波达方向(Direction of Arrival,DOA)估计性能。现有的大多数基于深度学习的DOA... 受恶劣电磁环境和元器件老化等因素影响,多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达的天线阵元发生故障的概率增加,而阵元故障会严重降低目标波达方向(Direction of Arrival,DOA)估计性能。现有的大多数基于深度学习的DOA估计方法未能充分利用阵列模型的先验信息,导致其建立的映射关系极为复杂,从而使得网络拟合难度较大。为此,提出一种基于先验驱动残差注意力网络的阵元故障MIMO雷达DOA估计方法。首先,利用MIMO雷达协方差矩阵的双重Toeplitz先验特性,构建了基于先验驱动的残差注意力网络,并引入残差注意力块对协方差矩阵的特征进行加权处理,旨在学习阵元故障下存在数据缺失的协方差矩阵和完整协方差矩阵生成向量之间的映射关系。然后,根据残差注意力网络输出的生成向量估计值得到完整的协方差矩阵。最后,利用RD-ESPRIT(Reduced Dimension ESPRIT)算法估计目标DOA。仿真结果表明,所提算法在阵元故障下的DOA估计性能优于现有算法,在信噪比为15 dB时,其DOA估计精度比效果最好的现有算法提高了43.26%。 展开更多
关键词 MIMO雷达 DOA估计 双重Toeplitz先验 残差网络 注意力机制
在线阅读 下载PDF
基于改进深度残差网络的轴承故障诊断方法
8
作者 高淑芝 韩晓亮 张义民 《机械设计与制造》 北大核心 2025年第3期241-244,249,共5页
针对卷积神经网络结构因深度的增加导致的网络退化以及准确率饱和问题,本文改进深度残差网络应用于故障诊断。首先,改进的残差网络包含三个残差单元模块,改进后的残差结构去掉了不必要的非线性层,在模块首尾都加入批量归一化层提升了网... 针对卷积神经网络结构因深度的增加导致的网络退化以及准确率饱和问题,本文改进深度残差网络应用于故障诊断。首先,改进的残差网络包含三个残差单元模块,改进后的残差结构去掉了不必要的非线性层,在模块首尾都加入批量归一化层提升了网络性能;其次,采集的轴承故障样本分为训练集与测试集,将训练集数据样本输入到网络模型中进行训练优化,输入测试集数据到诊断模型中得出诊断结果;最后,利用t-SNE可视化方法对模型中每一个残差模块学习特征的过程进行分析。经轴承寿命试验台数据结果表明,本方法对滚动轴承发生故障的诊断识别率均达到100%。可见该模型具有非常好的诊断识别效果。 展开更多
关键词 滚动轴承 故障诊断 深度残差网络 t-SNE可视化
在线阅读 下载PDF
基于敏感因素选择与残差网络的表面粗糙度预测
9
作者 史丽晨 邵献忠 +1 位作者 王海涛 豆卫涛 《计算机集成制造系统》 北大核心 2025年第2期512-523,共12页
为了对切削加工件的表面粗糙度进行预测,避免原材料浪费,提出一种基于敏感因素选择与残差网络(ResNet)的表面粗糙度预测方法。该方法首先分析切削系统中不同采样通道的振动信号与表面粗糙度之间的相关性确定敏感信号,然后利用小波包分... 为了对切削加工件的表面粗糙度进行预测,避免原材料浪费,提出一种基于敏感因素选择与残差网络(ResNet)的表面粗糙度预测方法。该方法首先分析切削系统中不同采样通道的振动信号与表面粗糙度之间的相关性确定敏感信号,然后利用小波包分解将敏感信号分解为不同频段的小波包系数并经过相关性分析选择敏感频段,最后融合各敏感频段的小波包系数构成系数矩阵作为ResNet的输入参数。结果表明,基于敏感因素选择与ResNet的预测方法的相对百分比误差不超过5.8%,均方根误差为0.0159,平均绝对误差为0.0133,决定系数为0.9148。通过与多层前馈网络、支持向量机、卷积神经网络对比证明,所提方法的预测精度具有优越性。 展开更多
关键词 残差网络 小波包分解 相关性分析 敏感频段 表面粗糙度 预测
在线阅读 下载PDF
基于残差网络的有限元分析结果云图的加密方法
10
作者 董正方 代鹏翔 +3 位作者 曾繁凯 康腾奥 李运华 田林杰 《科学技术与工程》 北大核心 2025年第25期10766-10772,共7页
在有限元分析中,提高网格密度能够显著增强仿真结果的准确性,但同时也需要消耗更多的计算资源,为了解决这一矛盾,通过将Res2Net、U-Net、通道注意力机制、几何特征提取融合在一起,对低网格密度的有限元结果云图数据进行学习,预测高网格... 在有限元分析中,提高网格密度能够显著增强仿真结果的准确性,但同时也需要消耗更多的计算资源,为了解决这一矛盾,通过将Res2Net、U-Net、通道注意力机制、几何特征提取融合在一起,对低网格密度的有限元结果云图数据进行学习,预测高网格密度的有限元结果云图,从而在不牺牲精度的前提下,减少所需的计算成本。模型通过在2倍、4倍和8倍等不同尺度条件下进行实验,在测试数据上的均方误差和平均绝对误差都有显著降低,充分证明了模型在数值预测准确性方面的卓越表现,结果表明,在较少的计算资源投入下,在保证输出结果的高精度下,可利用此模型进行有限元结果云图的加密。 展开更多
关键词 有限元分析 结果云图 Res2Net残差网络 跳跃连接 注意力机制
在线阅读 下载PDF
基于深度残差收缩网络的地铁车轮扁疤故障诊断
11
作者 梁红琴 姜进南 +4 位作者 龙辉 陶功权 卢纯 温泽峰 张楷 《中南大学学报(自然科学版)》 北大核心 2025年第3期1234-1248,共15页
针对地铁实际运营环境恶劣的问题,本文以轴箱振动加速度作为监测信号,基于深度残差收缩网络(DRSN),提出1种适用于强噪声背景的车轮扁疤故障严重程度辨识方法。首先,基于地铁车辆-轨道刚柔耦合动力学模型生成车轮扁疤故障数据集,并采用... 针对地铁实际运营环境恶劣的问题,本文以轴箱振动加速度作为监测信号,基于深度残差收缩网络(DRSN),提出1种适用于强噪声背景的车轮扁疤故障严重程度辨识方法。首先,基于地铁车辆-轨道刚柔耦合动力学模型生成车轮扁疤故障数据集,并采用数据增强技术提升数据集的多样性,同时满足深度学习对数据规模的要求。其次,设计1种结构合理的深度残差收缩网络,能够自适应地提取轴箱振动加速度信号的特征,从而实现车轮扁疤故障程度的智能分类。研究结果表明:在无噪声条件下,所提方法对正常车轮及轻度、中度和重度扁疤车轮的平均诊断精度达到99.88%(标准差为0.05);同时,在不同噪声等级下,该方法的平均诊断精度仍稳定保持在95%以上。与遗传算法结合支持向量机(GA-SVM)、卷积神经网络(CNN)、宽深度卷积神经网络(WDCNN)以及深度残差网络(ResNet)相比,所提方法具有更优异的辨识能力和鲁棒性。 展开更多
关键词 车辆-轨道耦合动力学模型 车轮扁疤 深度残差收缩网络 轴箱振动加速度 数据增强
在线阅读 下载PDF
基于多尺度残差网络的隔震构造质量检测研究
12
作者 党育 何亚 《东南大学学报(自然科学版)》 北大核心 2025年第1期183-193,共11页
为实现隔震构造质量的自动化检测,提出了一种基于计算机视觉的隔震构造质量检测方法。按照隔震构造图像特征和缺陷情况,将隔震构造分为7类。通过收集和拍摄全国已建的315栋隔震工程图片,构建了隔震构造数据集。参考多尺度残差网络模型Re... 为实现隔震构造质量的自动化检测,提出了一种基于计算机视觉的隔震构造质量检测方法。按照隔震构造图像特征和缺陷情况,将隔震构造分为7类。通过收集和拍摄全国已建的315栋隔震工程图片,构建了隔震构造数据集。参考多尺度残差网络模型Res2Net50,设计搭建了一个隔震构造质量初步检测模型ISDNet V2,该模型在Res2Net50的基础上,采用多个小卷积核堆叠,测试集结果表明:模型对各类隔震构造的识别平均准确率达到95.98%,F1分值均大于0.93,说明该模型对复杂背景的各类别隔震构造实拍图片具有很高的检测精度,检测结果偏于工程安全。对设置水平隔震缝的隔震构造,模型不仅能区别是否有缺陷,还可确定出缺陷位置。 展开更多
关键词 多尺度残差网络 隔震构造 数据集 质量检测
在线阅读 下载PDF
基于深度残差收缩网络的超声混凝土应力识别
13
作者 郑罡 张智宇 +1 位作者 于吉港 宋林正 《科学技术与工程》 北大核心 2025年第16期6869-6878,共10页
为研究混凝土梁应力的无损检测方法,提出一种基于深度残差收缩网络(deep residual shrinkage network,DRSN)的混凝土超声尾波应力识别算法(coda wave-DRSN,C-DRSN)。根据超声信号向量的高维特性,通过引入残差收缩块,使用软阈值函数和注... 为研究混凝土梁应力的无损检测方法,提出一种基于深度残差收缩网络(deep residual shrinkage network,DRSN)的混凝土超声尾波应力识别算法(coda wave-DRSN,C-DRSN)。根据超声信号向量的高维特性,通过引入残差收缩块,使用软阈值函数和注意力机制,降低信号噪声对测量应力精度的干扰,实现自适应识别并提取信号中应力特征,提高了识别准确率;对提取的信号特征进行可视化分析,从而建立特征与应力的映射关系。为验证所提方法的应力识别能力,分别采集混凝土工字梁在三点弯曲和偏心受压荷载作用下的超声尾波信号。结果表明:两种加载模式下,识别率均可达99%,表明该方法在超声混凝土梁应力识别方面具有可行性,与尾波干涉法相比,所提方法的准确率更高。 展开更多
关键词 无损检测 超声尾波 应力识别 混凝土 深度残差收缩网络(DRSN)
在线阅读 下载PDF
基于空间连通特征和残差卷积神经网络的情绪脑电识别研究
14
作者 张学军 付从伟 《数据采集与处理》 北大核心 2025年第4期1046-1054,共9页
脑电信号(Electroencephalogram,EEG)作为一种客观直接的信息源,被广泛应用于情绪识别任务。为了提取脑电信号的空间连通特征所隐含的信息,提出了一种基于空间连通特征和残差卷积神经网络(Spatial connectivity features and residual c... 脑电信号(Electroencephalogram,EEG)作为一种客观直接的信息源,被广泛应用于情绪识别任务。为了提取脑电信号的空间连通特征所隐含的信息,提出了一种基于空间连通特征和残差卷积神经网络(Spatial connectivity features and residual convolutional neural network,SCF-RCNN)模型的情绪识别方法。该方法从经预处理的脑电信号中提取皮尔逊相关系数(Pearson correlation coefficient,PCC)、锁相值(Phase-locked value,PLV)和互信息(Mutual information,MI)作为空间连通特征,使用包含两个残差模块的卷积神经网络模型来提取情感信息。在SEED数据集上的实验结果显示,PLV构造的连接矩阵与脑电情绪关系更为密切,其平均准确率可达93.38%,标准差为3.35%。与传统算法相比,SCF-RCNN在情绪识别领域的分类任务中表现更为优越,表明该方法在情绪识别领域具有重要的应用潜力。 展开更多
关键词 脑电信号 情绪识别 残差神经网络 连通特征 锁相值
在线阅读 下载PDF
基于时空多视野注意残差网络的城市区域交通流量预测
15
作者 陈静 杨国威 +1 位作者 张昭冲 王伟 《系统仿真学报》 北大核心 2025年第3期607-622,共16页
为高效、全面提取城市中复杂的时空相关性,提出一种新的端到端的深度学习框架—时空多视野注意残差网络(spatiotemporal multi-view attention residual network, ST-MVAR),用于城市区域交通流量预测。整合交通流量的临近性、周期性、... 为高效、全面提取城市中复杂的时空相关性,提出一种新的端到端的深度学习框架—时空多视野注意残差网络(spatiotemporal multi-view attention residual network, ST-MVAR),用于城市区域交通流量预测。整合交通流量的临近性、周期性、趋势性和外部因素作为网络输入,该网络通过跳跃连接,形成多层嵌套残差网络结构;设计多视野扩展模块,用于捕获交通流量对不同距离的空间依赖;引入坐标注意力机制,有效建立交通流量的时空相关性;通过K-Means聚类方法获取各时段交通流量所属模式,作为额外特征,进一步提高模型的预测精度。实验结果表明:ST-MVAR使用更少的参数获得更高的性能,相比之前的方法 RMSE降低14.2%。 展开更多
关键词 交通流量预测 残差网络 视野扩展 坐标注意力 K-MEANS聚类
在线阅读 下载PDF
基于级联的多尺度特征融合残差去噪网络
16
作者 郭业才 胡晓伟 毛湘南 《计算机科学》 北大核心 2025年第6期239-246,共8页
针对图像去噪特征提取单一化以及特征利用率低,不能生成更清晰图像的问题,提出了级联多尺度特征融合残差真实图像去噪网络。该网络双分支自适应密集残差块采用双路非对称扩张卷积扩展图像感受野,在水平尺度上选择性地提取丰富的纹理特... 针对图像去噪特征提取单一化以及特征利用率低,不能生成更清晰图像的问题,提出了级联多尺度特征融合残差真实图像去噪网络。该网络双分支自适应密集残差块采用双路非对称扩张卷积扩展图像感受野,在水平尺度上选择性地提取丰富的纹理特征。在多尺度空间U-Net模块中,利用多尺度空间融合块增强网络对图像整体结构的学习能力,学习不同层次的信息,获取基于图像空间和上下文信息的多级特征。跳跃连接促进结构之间的参数共享,使不同尺度的特征充分融合,保证信息的完整性。最后,采用双残差学习构建出清晰的去噪图像。结果表明,该算法在真实噪声数据集(DND和SIDD)上的峰值信噪比分别为39.68 dB和39.50 dB,结构相似性分别为0.953和0.957,优于主流去噪算法。所提算法在增强去噪性能的同时,也保留了更详细的信息,使图像质量进一步提升。 展开更多
关键词 图像去噪 真实噪声 卷积神经网络 多尺度特征融合 密集残差
在线阅读 下载PDF
基于残差注意力密集网络的协作频谱感知方法
17
作者 王安义 朱涛 龚健超 《电信科学》 北大核心 2025年第2期84-94,共11页
针对基于卷积神经网络(convolutional neural network,CNN)的协作频谱感知算法存在的网络结构简单、特征提取能力不足和感知性能下降等问题,提出了一种基于残差注意力密集网络(residual attention dense network,RADN)的协作频谱感知算... 针对基于卷积神经网络(convolutional neural network,CNN)的协作频谱感知算法存在的网络结构简单、特征提取能力不足和感知性能下降等问题,提出了一种基于残差注意力密集网络(residual attention dense network,RADN)的协作频谱感知算法。该算法通过改进基础残差块,从感受野、通道和空间3个维度引入注意力机制,结合残差连接和密集连接,构建了强大的深层特征提取结构——密集残差(residual in dense,RID),显著提升了网络的特征提取能力和频谱感知性能。实验结果表明,相较于传统深度学习方法,RADN算法在低信噪比(signal-to-noise ratio,SNR)条件下表现出显著的性能提升。该方法不仅能够适应多种调制方式,还具备较高的检测概率和良好的鲁棒性。 展开更多
关键词 协作频谱感知 卷积神经网络 注意力机制 密集连接 残差连接
在线阅读 下载PDF
基于ResNet残差神经网络识别的深部煤层显微组分和微裂缝分类——以鄂尔多斯盆地石炭系本溪组8~#煤层为例 被引量:1
18
作者 刘大锰 王子豪 +6 位作者 陈佳明 邱峰 朱凯 高羚杰 周柯宇 许少博 孙逢瑞 《石油与天然气地质》 CSCD 北大核心 2024年第6期1524-1536,共13页
显微组分和微裂缝是煤储层重要的微观特征,影响煤储层产气能力和力学性质。采集鄂尔多斯盆地深部煤层气井石炭系本溪组8^(#)煤层样品,运用ResNet残差神经网络识别方法,研究了显微组分和微裂缝发育特征。在煤样305个显微组分和65个微裂... 显微组分和微裂缝是煤储层重要的微观特征,影响煤储层产气能力和力学性质。采集鄂尔多斯盆地深部煤层气井石炭系本溪组8^(#)煤层样品,运用ResNet残差神经网络识别方法,研究了显微组分和微裂缝发育特征。在煤样305个显微组分和65个微裂缝图样本研究的基础上,建立了基于残差神经网络识别的煤岩显微组分和微裂缝识别方法,并利用残差神经网络技术对镜下数据进行反演,构建了深部煤储层显微组分和微裂缝的识别和分类模型。结合地质特征和聚类算法结果联合验证,模型具有可靠性。显微组分预测准确率为0.90,微裂缝预测准确率为0.80,可以有效预测煤岩显微组分和微裂缝类型。模型识别与预测表明裂缝形态与显微组分具有相关关系。裂缝的发育与显微组分中的镜质组关系最大,裂缝类别和数量的预测结果与显微组分发育的相吻合。 展开更多
关键词 分类模型 残差神经网络 显微组分 微裂缝 深部煤储层 煤层气 石炭系 鄂尔多斯盆地
在线阅读 下载PDF
基于级联MCNN-MMLP双残差网络的短期负荷预测 被引量:1
19
作者 余凯峰 吐松江·卡日 +2 位作者 张紫薇 马小晶 王志刚 《电力系统保护与控制》 北大核心 2025年第2期151-162,共12页
为了解决负荷特性复杂导致负荷预测精度低的问题,提出了一种GWO-VMD和级联MCNN-MMLP双残差网络的短期负荷预测模型。首先,利用由灰狼算法(grey wolf optimize,GWO)优化的变分模态分解(variational mode decomposition,VMD)对原始负荷数... 为了解决负荷特性复杂导致负荷预测精度低的问题,提出了一种GWO-VMD和级联MCNN-MMLP双残差网络的短期负荷预测模型。首先,利用由灰狼算法(grey wolf optimize,GWO)优化的变分模态分解(variational mode decomposition,VMD)对原始负荷数据进行处理,降低原始负荷数据的复杂程度。其次,使用多尺度卷积神经网络(multiscale convolutional neural networks,MCNN)和多层感知机(multi-layer perception,MLP)结合的双残差神经网络对各个模态进行迁移学习训练和预测,并在MLP网络中引入多头注意力机制弥补网络信息瓶颈问题。最后,再次使用MCNN-MMLP双残差模型对初步预测的误差进行预测并校正初值,从而进一步提升预测精确度。通过对实际负荷数据进行分析,本模型的均方误差为5.024(MW)^(2)、均方根误差为2.241 MW、平均绝对百分比误差为0.160%,决定系数为0.996,各性能指标均优于其他传统及智能负荷预测方法。 展开更多
关键词 负荷预测 多尺度卷积神经网络 残差神经网络 多头注意力机制 迁移学习
在线阅读 下载PDF
基于融合特征和残差神经网络的10 kV高压断路器机械故障声纹识别方法 被引量:4
20
作者 段梵 李先允 +2 位作者 单光瑞 陈兰杭 杨凯 《高压电器》 北大核心 2025年第3期205-213,共9页
针对传统10 kV高压断路器故障诊断方法过于依赖主观经验、准确率不高、泛化能力差的问题。提出了一种基于声学特征的10 kV高压断路器常见机械故障识别方法。首先,以(ZN63)12/630A型高压户内真空断路器为研究对象,设置常见的8种机械故障... 针对传统10 kV高压断路器故障诊断方法过于依赖主观经验、准确率不高、泛化能力差的问题。提出了一种基于声学特征的10 kV高压断路器常见机械故障识别方法。首先,以(ZN63)12/630A型高压户内真空断路器为研究对象,设置常见的8种机械故障,采集其分合闸时的声音作为检测信号;其次,将采集的故障声纹信号进行预处理,提取故障声纹信号的梅尔倒频谱系数(MFCC)特征、色度特征(chroma features)以及一维平均能量和频谱质心,并利用Fisher比舍弃贡献率低的分量,构成融合特征;最后以提取的融合特征作为诊断依据,构建基于残差神经网络的10 kV断路器机械故障诊断模型。结果表明文中方法对10 kV高压断路器常见的8种机械故障诊断识别准确率为99.99%。可作为当前检测手段的有效补充,提高高压断路器综合检测和潜伏性缺陷识别能力。 展开更多
关键词 10 kV高压断路器 声纹识别 融合特征 残差神经网络 故障诊断
在线阅读 下载PDF
上一页 1 2 106 下一页 到第
使用帮助 返回顶部