期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
基于残差结构的棉花异性纤维检测算法 被引量:2
1
作者 师红宇 位营杰 +1 位作者 管声启 李怡 《纺织学报》 EI CAS CSCD 北大核心 2023年第12期35-42,共8页
针对棉花中异性纤维检测精度低、异性纤维隐藏或边角位置不易识别等原因导致检测效果不佳的问题,提出一种基于残差结构的棉花异性纤维检测算法。首先,针对异性纤维检测目标,提出一种棉花异性纤维在线检测方案;其次,针对异性纤维颜色、... 针对棉花中异性纤维检测精度低、异性纤维隐藏或边角位置不易识别等原因导致检测效果不佳的问题,提出一种基于残差结构的棉花异性纤维检测算法。首先,针对异性纤维检测目标,提出一种棉花异性纤维在线检测方案;其次,针对异性纤维颜色、纹理、位置等特征,构建深浅层混合数据集;在此基础上设计了残差结构的异性纤维检测网络模型算法,解决了现有检测算法精度低、异性纤维隐藏或边角位置的问题;最后,将该算法与传统经典算法对比实验。结果表明:在深浅层混合数据集下,与经典算法对比,该算法具有较高的准确性和实时性,其平均检测准确率达到88.48%,1张图像的检测速度为0.019 s,满足工业现场实时检测需求,为棉花中异性纤维检测提供了一种新方法。 展开更多
关键词 异性纤维检测 棉花 注意力机制 残差结构 深度可分离卷积 网络模型
在线阅读 下载PDF
基于改进宽残差结构的接触网吊弦状态辨识分类网络
2
作者 金炜东 张志军 唐鹏 《铁道学报》 EI CAS CSCD 北大核心 2022年第10期40-45,共6页
铁路接触网系统中吊弦的工作状态对机车运行至关重要。视频图像的接触网吊弦状态快速准确识别备受关注,因吊弦图像数据的特殊性导致现有网络模型识别精度较低。本文针对吊弦数据特征设计分类网络结构,提出适应接触网吊弦状态识别的VRNe... 铁路接触网系统中吊弦的工作状态对机车运行至关重要。视频图像的接触网吊弦状态快速准确识别备受关注,因吊弦图像数据的特殊性导致现有网络模型识别精度较低。本文针对吊弦数据特征设计分类网络结构,提出适应接触网吊弦状态识别的VRNet分类网络。VRNet的核心为嵌入了注意力机制的宽残差结构,将此结构作为特征提取模块取代VGG-16中的一般卷积,改变其单一的平原结构。并使用Ghost机制替换宽残差结构中的普通卷积,大幅降低了模型的参数量和运算量。VRNet分类网络在吊弦故障分类实验中精度达到97%,优于其他分类网络,并在相关应用研究中表现出优良性能。 展开更多
关键词 吊弦 注意力机制 残差结构 VGG-16 Ghost机制
在线阅读 下载PDF
基于残差结构的GAN网络的显著性预测研究 被引量:2
3
作者 赖远哲 陈向阳 +2 位作者 李旭东 付星堡 曹倩倩 《微电子学与计算机》 2021年第8期95-100,共6页
优化了简单生成对抗网络结构,用于更有效的通过对抗性实例训练得到视觉显着性图,减少假阳性产生和提高显著性.网络模型仍遵循传统生成对抗网络结构,第一阶段是由一个使用残差结构建的生成器组成,该模型的权值由显著图的下采样版本的二... 优化了简单生成对抗网络结构,用于更有效的通过对抗性实例训练得到视觉显着性图,减少假阳性产生和提高显著性.网络模型仍遵循传统生成对抗网络结构,第一阶段是由一个使用残差结构建的生成器组成,该模型的权值由显著图的下采样版本的二分类交叉熵损失(BCE)的反向传播计算得到的,训练得到更有效的显著图.预测结果由受训练的判别器网络进行生成阶段生成的显著图与真值图之间的二值分类处理.实验展示了改进生成对抗网络中的生成器的预测显著图的能力对整个网络性能提升,相较于其他显著图预测模型也有一定领先. 展开更多
关键词 视觉显著性 生成对抗网络 残差结构 交叉熵
在线阅读 下载PDF
基于高效可扩展改进残差结构神经网络的舰船目标识别技术 被引量:8
4
作者 付哲泉 李尚生 +2 位作者 李相平 但波 王旭坤 《电子与信息学报》 EI CSCD 北大核心 2020年第12期3005-3012,共8页
神经网络的深度在一定范围内与识别效果成正相关,为解决超出范围后网络层数增加识别准确率却下降的模型饱和问题,该文提出一种具有高效的微块内部结构和残差网络结构的神经网络模型,用于对舰船目标基于高分辨距离像的分类识别。该方法... 神经网络的深度在一定范围内与识别效果成正相关,为解决超出范围后网络层数增加识别准确率却下降的模型饱和问题,该文提出一种具有高效的微块内部结构和残差网络结构的神经网络模型,用于对舰船目标基于高分辨距离像的分类识别。该方法利用具有小尺度卷积核的卷积模块提取目标的稳定可分特征,同时利用联合损失函数约束目标特征的类内距离提高识别能力。仿真结果表明,该模型相比于其他常见网络结构,在模型参数更少的情况下,识别效果更好,同时具有较强的噪声鲁棒性。 展开更多
关键词 目标识别 高分辨距离像 神经网络 残差结构
在线阅读 下载PDF
基于残差全局上下文注意和跨层特征融合的去雾网络
5
作者 杨燕 陈飞 《北京航空航天大学学报》 北大核心 2025年第4期1048-1058,共11页
基于深度学习的图像去雾算法通常在提取特征时使用传统的卷积层,容易造成图像的细节和边缘等信息丢失,提取特征时忽略图像的位置信息,融合特征时忽略图像原始信息,不能恢复出结构完整、清晰的高质量无雾图像。针对该问题,提出了一种基... 基于深度学习的图像去雾算法通常在提取特征时使用传统的卷积层,容易造成图像的细节和边缘等信息丢失,提取特征时忽略图像的位置信息,融合特征时忽略图像原始信息,不能恢复出结构完整、清晰的高质量无雾图像。针对该问题,提出了一种基于残差全局上下文注意和跨层特征融合的去雾算法。对提出的残差全局上下文注意块串行得到残差组结构,并对网络的前2层(即浅层)进行特征提取,得到浅层丰富的上下文信息;引入坐标注意力,建立具有位置信息的注意力图,并将其应用于残差上下文特征提取,放置在网络的第3层(即深层),提取更深层次的语义信息;在网络中间层,通过跨层融合来自不同分辨率流的特征信息,增强深浅层的信息交换,达到特征增强的目的;聚合网络得到具有丰富语义信息的特征与原始输入特征,提升复原效果。在RESIDE和Haze4K数据集上的实验结果表明:所提算法在视觉效果与客观指标上都取得了较好的效果。 展开更多
关键词 图像去雾 深度学习 残差结构 注意力机制 特征融合
在线阅读 下载PDF
局部注意力引导下的全局池化残差分类网络 被引量:1
6
作者 姜文涛 董睿 张晟翀 《光电工程》 CAS CSCD 北大核心 2024年第7期107-124,共18页
大部分注意力机制虽然能增强图像特征,但没有考虑局部特征的关联性影响特征整体的问题。针对以上问题,本文提出局部注意力引导下的全局池化残差分类网络(MSLENet)。MSLENet的基线网络为ResNet34,首先改变首层结构,保留图像重要信息;其... 大部分注意力机制虽然能增强图像特征,但没有考虑局部特征的关联性影响特征整体的问题。针对以上问题,本文提出局部注意力引导下的全局池化残差分类网络(MSLENet)。MSLENet的基线网络为ResNet34,首先改变首层结构,保留图像重要信息;其次提出多分割局部增强注意力机制(MSLE)模块,MSLE模块将图像整体分割成多个小图像,增强每个小图像的局部特征,通过特征组交互的方式将局部重要特征引导到全局特征中;最后提出池化残差(PR)模块来处理ResNet残差结构丢失信息的问题,提高各层之间的信息利用率。实验结果表明,MSLENet通过增强局部特征的关联性,在多个数据集上均有良好的效果,有效地提高了网络的表达能力。 展开更多
关键词 图像分类 注意力机制 残差结构 局部特征 全局特征 关联性
在线阅读 下载PDF
基于残差单元与注意力门的非对称编解码海杂波抑制网络
7
作者 陈胜垚 胡晨康 +2 位作者 程智勇 席峰 刘中 《电子学报》 EI CAS CSCD 北大核心 2024年第8期2628-2640,共13页
针对非均匀海杂波环境下弱小目标检测困难的问题,本文基于复值残差单元和注意力门机制,提出一种用于海杂波抑制的非对称编解码网络(Asymmetric Encoder-Decoder Network,AED-Net).该网络以雷达回波经匹配滤波后得到的复值信号为输入,利... 针对非均匀海杂波环境下弱小目标检测困难的问题,本文基于复值残差单元和注意力门机制,提出一种用于海杂波抑制的非对称编解码网络(Asymmetric Encoder-Decoder Network,AED-Net).该网络以雷达回波经匹配滤波后得到的复值信号为输入,利用复值残差单元取代常规卷积单元进行弱小目标和海杂波特征的提取,增强网络特征提取能力的同时避免特征信息退化.然后采用注意力门模块将编码路径各模块提取的特征信息分别送入到解码路径对应的模块.最终输出海杂波抑制后的复值信号.由于各注意力门的输入和输出维度可根据网络结构自主选择,该网络设计是一种非对称编解码结构.与典型对称编解码网络UNet相比,复值残差单元与注意力门的引入显著降低了特征信息的冗余度,增强特征信息的提取与传递,提升了海杂波抑制性能.与此同时,复值残差单元的参数规模远小于卷积单元,而注意力门的引入也有效减少解码路径单元的数量,整个网络的参数规模显著减小.基于海杂波实测数据的实验结果表明,与典型复值UNet(Complex Value-UNet,CV-UNet)网络相比,AED-Net的输出信杂比平均提升9 dB,有效工作的最低信杂比降低了3 dB,模型参数量和计算量分别减少57.8%、50%. 展开更多
关键词 海杂波抑制 编解码网络 残差结构 注意力门 复值信号
在线阅读 下载PDF
基于异构数据的患者术后非计划内再入院预测
8
作者 俞凯 董小锋 +2 位作者 袁贞明 崔朝健 罗伟斌 《工程科学与技术》 北大核心 2025年第1期89-97,共9页
非计划内再入院是医院风险管理的重要信号,也是医疗质量的重要指标。目前,再入院预测已经成为医疗系统的一项重要任务,大量学者结合机器学习技术提出非常多有效的预测方法,但大多仅以单一结构数据为研究对象或仅使用串联方法融合异构数... 非计划内再入院是医院风险管理的重要信号,也是医疗质量的重要指标。目前,再入院预测已经成为医疗系统的一项重要任务,大量学者结合机器学习技术提出非常多有效的预测方法,但大多仅以单一结构数据为研究对象或仅使用串联方法融合异构数据。前者未能充分利用电子病历中丰富的数据与信息,后者则未能更好地融合异构数据的信息。基于上述问题,本文提出了一种基于CTFN异构数据融合方法,结合患者出院小结文本与住院期间产生的横断面数据预测患者再入院风险。预测模型的构建分为3个步骤。首先,利用RoBerta模型提取患者出院小结中的特征信息并得到表征矩阵;其次,使用CNN模型学习患者横断面特征信息,得到表征矩阵;最后,通过CTFN方法融合两个表征矩阵,得到异构数据的表征矩阵并通过线性层分类器得到最后的预测结果。CTFN融合方法利用张量外积融合多个单模态表征矩阵,并增加CNN模型及残差结构设计加强异构数据模态内与模态间的信息学习。根据某公立医院的临床数据对上述方法进行验证,实验结果表明其表现出色,其中,召回率达到了76.1%,ROC曲线下面积达到了71.5%,均高于所对比的基线模型。证实了异构数据能提升分类器预测效果,且CTFN融合方法能够更好地融合异构数据间的信息,进一步提升分类器预测效果。 展开更多
关键词 异构数据 深度学习 张量融合 再入院 卷积网络 残差结构
在线阅读 下载PDF
基于注意力机制的3D假肢重建算法
9
作者 崔凤英 李佩佩 曹梦龙 《青岛科技大学学报(自然科学版)》 2025年第1期120-126,共7页
为精准捕获假肢几何细节,提高重构假肢曲面的精确度和完整性,提出了一种基于注意力机制的3D假肢重建算法。算法首先引入特征嵌入层,解决点云数据的无序性问题;然后引入残差式注意力模块,提取物体雏形特征信息同时避免网络性能出现退化;... 为精准捕获假肢几何细节,提高重构假肢曲面的精确度和完整性,提出了一种基于注意力机制的3D假肢重建算法。算法首先引入特征嵌入层,解决点云数据的无序性问题;然后引入残差式注意力模块,提取物体雏形特征信息同时避免网络性能出现退化;为丰富物体形状信息,采用EdgeConv模块捕获局部特征信息,并采用权重特征融合模块将其与物体的粗糙形状信息进行融合;最后将物体的精细特征和任一点特征输入到IM-Net解码器,判断该点相对于该形状的内外状态值,并通过标记立方体来提取表面。实验结果表明,与DMC、Deep-SDF相比,所提算法在ModelNet40上重建任务的均方误差分别减小30%和45.7%。通过采集4位患者假肢实测数据进行仿真验证,所提算法的均方误差至少降低12.2%。因此所提出的算法捕获假肢细节特征的能力较强,重建模型精度较高,值得推广应用。 展开更多
关键词 注意力机制 残差结构 3D假肢 表面重建
在线阅读 下载PDF
面向人体异常行为识别的FDS-ABPG-GoogLeNet模型研究
10
作者 李一帆 李聪聪 +1 位作者 李亚南 王斌 《现代电子技术》 北大核心 2025年第6期136-146,共11页
随着人口老龄化的加剧,老年人异常行为的识别技术已成为医疗保健领域亟需解决的关键问题。目前的异常行为识别算法面临一个挑战,即无法确保在识别多种异常行为的同时提高模型的识别准确率与计算效率。为解决此问题,提出一种FDS-ABPG-Goo... 随着人口老龄化的加剧,老年人异常行为的识别技术已成为医疗保健领域亟需解决的关键问题。目前的异常行为识别算法面临一个挑战,即无法确保在识别多种异常行为的同时提高模型的识别准确率与计算效率。为解决此问题,提出一种FDS-ABPG-GoogLeNet模型。该模型采用了三种不同层级的改进Inception模块,并将这些模块在网络深层和浅层结构中并行连接,在中层结构中引入残差结构,通过特征融合的方式显著提高了网络的计算效率和识别准确率。同时,针对异常行为数据集中动作单一的问题,自建了包含多种异常动作的数据集,并通过将一维动作时序数据二维图形化处理后使得行为动作特征更易于提取。实验结果表明,所提FDS-ABPG-GoogLeNet模型的准确率、灵敏度和特异性分别达到99.40%、99.49%和99.93%。 展开更多
关键词 异常行为识别 Inception模块 残差结构 特征融合 特征提取 卷积神经网络
在线阅读 下载PDF
改进残差网络的多角度车型识别方法 被引量:3
11
作者 蒋行国 苏欣欣 蔡晓东 《电视技术》 2018年第6期93-98,共6页
在现实交通场景中,现有车型识别方法主要针对正面或侧面角度的车辆,但由于识别角度相对单一并不适用于多角度的车型识别。为满足实际场景下对车型识别要求,提出一种改进的残差结构特征提取网络,对其结构进行加宽改进,网络使用较少参数... 在现实交通场景中,现有车型识别方法主要针对正面或侧面角度的车辆,但由于识别角度相对单一并不适用于多角度的车型识别。为满足实际场景下对车型识别要求,提出一种改进的残差结构特征提取网络,对其结构进行加宽改进,网络使用较少参数提取特征,加快整体网络的收敛速度。其次,结合使用基于可调类间距的Softmax Loss度量学习方法(Large-Margin Softmax Loss)进行车型识别,达到增大类间距离并减小类内距离的学习目标,提高识别的准确率。实验表明,本方法能够在交叉路口、林荫道、园区道路等复杂交通场景下进行多角度车型识别,测试识别准确率达97.4%。 展开更多
关键词 残差结构 卷积神经网络 度量学习 复杂交通场景 车型识别
在线阅读 下载PDF
基于改进YOLOv7-tiny的铝型材表面缺陷检测方法
12
作者 王浚银 文斌 +2 位作者 沈艳军 张俊 王子豪 《浙江大学学报(工学版)》 北大核心 2025年第3期523-534,共12页
针对铝型材表面缺陷具有种类多样、缺陷尺度差异大和小目标缺陷漏检的问题,提出改进的YOLOv7-tiny检测算法.利用残差结构、无参注意力机制(SimAM)、激活函数(FReLU)和裁剪卷积等重构空间金字塔池化模块,捕捉更多的细节信息,加强网络多... 针对铝型材表面缺陷具有种类多样、缺陷尺度差异大和小目标缺陷漏检的问题,提出改进的YOLOv7-tiny检测算法.利用残差结构、无参注意力机制(SimAM)、激活函数(FReLU)和裁剪卷积等重构空间金字塔池化模块,捕捉更多的细节信息,加强网络多尺度学习能力.优化检测层获取更多小目标特征和位置信息,提高网络多尺度缺陷检测能力.引入部分卷积替换高效层聚合网络(ELAN)中的3×3卷积建立轻量化模型,减少计算和训练负担.结合归一化Wasserstein距离(NWD)损失度量相似度,加速网络收敛并提升小目标缺陷检测能力.在天池铝型材数据集上进行测试,结果表明,改进YOLOv7-tiny算法在置信度阈值为0.25时,精确度达到95.0%,召回率达到91.8%,均值平均精度mAP@0.5达到94.5%,检测速度为45帧/s.相较于原算法,改进算法的mAP@0.5提高4.2个百分点,在脏点缺陷上的平均精度AP提高13.1个百分点;改进算法对于低分辨率图像和被干扰图像有更好的检测结果,表明其具备更好的泛化性和抗干扰能力. 展开更多
关键词 铝型材 表面缺陷 小目标检测 SPPCSPC重构 残差结构 YOLOv7-tiny 归一化Wasserstein距离(NWD)损失
在线阅读 下载PDF
基于深度残差网络的金属腐蚀图像分割 被引量:1
13
作者 刘琼 黄景煦 +2 位作者 张熠卿 李广睿 向浪 《北京信息科技大学学报(自然科学版)》 2022年第5期53-59,共7页
传统的图像处理技术依赖于人工提取特征,难以应对复杂的金属腐蚀状况。而经典的深度学习算法没有有效利用特征信息,并且包含大量的参数,导致金属腐蚀图像分割精度低,计算量大。为此设计了一种深度残差语义分割算法,通过引入残差结构以... 传统的图像处理技术依赖于人工提取特征,难以应对复杂的金属腐蚀状况。而经典的深度学习算法没有有效利用特征信息,并且包含大量的参数,导致金属腐蚀图像分割精度低,计算量大。为此设计了一种深度残差语义分割算法,通过引入残差结构以缓解神经网络梯度消失的问题,由浅入深地提取不同尺度的腐蚀图像特征。针对金属腐蚀图像的固有特性,融入了局部上下文特征以及多尺度的特征以提高金属腐蚀图像分割的精度,通过深度卷积和逐点卷积相结合进一步降低模型的参数量,并提高模型的泛化能力。在公共腐蚀数据集的实验结果表明,该方法以19.57 MB的参数量,取得了79.39%的平均交并比和87.91%的平均像素准确率,显著提高了腐蚀图像分割的精度。 展开更多
关键词 腐蚀图像分割 残差结构 局部上下文特征 多尺度特征
在线阅读 下载PDF
基于改进残差U-Net的视网膜血管分割算法 被引量:2
14
作者 狄巨星 刘双和 《信息技术与信息化》 2022年第10期87-90,共4页
可靠的视网膜血管分割可以作为监测和诊断某些疾病的一种方式,如糖尿病和高血压,因为它们影响视网膜的血管结构。由于眼睛血管结构复杂,病理特征不确定,使得血管分割仍然存在许多局限性和不足。基于此,提出了一种基于对称式的残差U-Net... 可靠的视网膜血管分割可以作为监测和诊断某些疾病的一种方式,如糖尿病和高血压,因为它们影响视网膜的血管结构。由于眼睛血管结构复杂,病理特征不确定,使得血管分割仍然存在许多局限性和不足。基于此,提出了一种基于对称式的残差U-Net网络结构用于视网膜血管分割。网络保留了U-Net对称式的编码器-解码器结构,并将改进后的残差块进行融合,利用残差模块增强网络的特征提取能力。最后采用公开的DRIVE彩色眼底图像数据集进行了充分的对比试验,模型在测试集上的准确率、特异性、灵敏度和AUROC值分别达到了96.48%、98.60%、82.96%和98.35%。试验结果显示,所提分割模型对视网膜血管图像可达到优异的分割效果。 展开更多
关键词 视网膜眼底图像 血管分割 残差结构 U-Net 深度学习
在线阅读 下载PDF
基于多级联递进卷积结构的图像去雨算法 被引量:1
15
作者 张勇 郭杰龙 +3 位作者 汪帆 兰海 俞辉 魏宪 《液晶与显示》 CAS CSCD 北大核心 2023年第10期1409-1422,共14页
雨天图像会影响计算机视觉任务的效果与精度。雨天图像常常包含来自不同方向、大小、形状的雨点或雨痕,在对这些雨点、雨痕进行去除时,现有的方法往往没有考虑到雨天图像不同精细尺度下的特征信息,仅采用单一尺度进行图像去雨存在很大缺... 雨天图像会影响计算机视觉任务的效果与精度。雨天图像常常包含来自不同方向、大小、形状的雨点或雨痕,在对这些雨点、雨痕进行去除时,现有的方法往往没有考虑到雨天图像不同精细尺度下的特征信息,仅采用单一尺度进行图像去雨存在很大缺陷,无法恢复出足够清晰的视觉任务图像。受益于卷积神经网络架构的强大特征提取能力,本文提出了一种端到端的多级联递进卷积结构算子,该算子包含4层卷积层,通过阶梯化连接构成一个整体模块,该模块可以针对多尺度场景下的雨天进行特征提取并整合。将该算子模块嵌入到渐进循环网络结构中,利用循环结构多次去除雨纹,最终有效还原出接近真实图像的无雨图像。该方法在现有的人工合成雨图数据集Rain100H、Rain100L、Rain800与自动驾驶领域合成雨图数据集BDD1000上进行了对比实验。实验结果表明,该算法在4个数据集上的PSNR值达到了30.70,37.91,27.63,35.74 dB,SSIM值达到了0.914,0.980,0.894,0.977。通过真实雨图数据集去雨结果的可视化展示,充分验证了本文方法在去雨任务上的有效性。 展开更多
关键词 图像去雨 多级联递进卷积结构 卷积神经网络 深度学习 多尺度特征 残差结构
在线阅读 下载PDF
融合深度可分离卷积的多尺度残差UNet在PolSAR地物分类中的研究 被引量:4
16
作者 谢雯 王若男 +1 位作者 羊鑫 李永恒 《电子与信息学报》 EI CSCD 北大核心 2023年第8期2975-2985,共11页
极化合成孔径雷达(Polarimetric Synthetic Aperture Radar,PolSAR)地物分类作为合成孔径雷达(Synthetic Aperture Radar,SAR)图像解译的重要研究内容之一,越来越受到国内外学者的广泛关注。不同于自然图像,PolSAR数据集不仅具有独特的... 极化合成孔径雷达(Polarimetric Synthetic Aperture Radar,PolSAR)地物分类作为合成孔径雷达(Synthetic Aperture Radar,SAR)图像解译的重要研究内容之一,越来越受到国内外学者的广泛关注。不同于自然图像,PolSAR数据集不仅具有独特的数据属性同时还属于小样本数据集,因此如何更充分地利用数据特性以及标签样本是需要重点考虑的内容。基于以上问题,该文在UNet基础上提出了一种新的用于PolSAR地物分类的网络架构——多尺度可分离残差UNet(Multiscale Separable Residual Unet,MSR-Unet)。该网络结构首先利用深度可分离卷积替代普通2D卷积,分别提取输入数据的空间特征和通道特征,降低特征的冗余度;其次提出改进的多尺度残差结构,该结构以残差结构为基础,通过设置不同大小的卷积核获得不同尺度的特征,同时采用密集连接对特征进行复用,使用该结构不仅能在一定程度上增加网络深度,获取更优特征,还能使网络充分利用标签样本,增强特征传递效率,从而提高PolSAR地物的分类精度。在3个标准数据集上的实验结果表明:与传统分类方法及其它主流深度学习网络模型如UNet相比,MSR-Unet网络结构能够在不同程度上提高平均准确率、总体准确率和Kappa系数且具有更好的鲁棒性。 展开更多
关键词 PolSAR地物分类 UNet 残差结构 深度可分离卷积
在线阅读 下载PDF
基于LGC的反残差目标检测算法 被引量:3
17
作者 张云佐 李文博 郑婷婷 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第6期1287-1293,共7页
基于深度学习的目标检测是计算机视觉领域的研究热点,目前主流的目标检测模型大多通过增加网络深度和宽度以获得更好的检测效果,但容易导致参数量增加、检测速度降低的问题。为兼顾检测精度与速度,借鉴Ghost卷积和分组卷积的轻量化思想... 基于深度学习的目标检测是计算机视觉领域的研究热点,目前主流的目标检测模型大多通过增加网络深度和宽度以获得更好的检测效果,但容易导致参数量增加、检测速度降低的问题。为兼顾检测精度与速度,借鉴Ghost卷积和分组卷积的轻量化思想,提出了一种高效的轻量级Ghost卷积(LGC)模型,以采用更少的参数获得更多的特征图。在该卷积模型的基础上引入反残差结构重新设计了CSPDarkNet53,生成了一种基于LGC的反残差特征提取网络,以提高网络对全局特征信息的提取能力。使用反残差特征提取网络替换YOLOv4的骨干网络,辅以深度可分离卷积进一步减少参数,提出了一种反残差目标检测算法,以提升目标检测的整体性能。实验结果表明:相比于主流的目标检测算法,所提算法在检测精度相当的前提下,模型参数量和检测速度具有明显的优势。 展开更多
关键词 轻量化模型 Ghost卷积 深度可分离卷积 残差结构 YOLOv4 目标检测
在线阅读 下载PDF
基于改进残差卷积网络的柴油机故障诊断方法 被引量:3
18
作者 宋凯 黄盟 +3 位作者 尤健 张琳琳 陈昌毅 毕晓阳 《内燃机工程》 CAS CSCD 北大核心 2023年第5期66-73,共8页
针对基于卷积神经网络(convolutional neural network,CNN)的柴油机故障诊断方法在训练样本匮乏时易过拟合、诊断准确率低的问题,提出一种基于改进残差卷积网络的“端到端”柴油机故障诊断方法。该方法采用连续可微指数线性单元(continu... 针对基于卷积神经网络(convolutional neural network,CNN)的柴油机故障诊断方法在训练样本匮乏时易过拟合、诊断准确率低的问题,提出一种基于改进残差卷积网络的“端到端”柴油机故障诊断方法。该方法采用连续可微指数线性单元(continuously differentiable exponential linear units,CELU)作为CNN激活函数并采取小批次训练方法,提高模型提取特征能力的同时加速其收敛;在模型中加入残差结构将深层网络提取到的抽象特征与表层特征相融合,避免深层网络导致的特征信息丢失与梯度消失问题。经柴油机故障模拟试验验证,该方法在仅使用20个样本进行训练时,能实现95.5%的故障诊断准确率;与CNN相比,该方法在不同类型及规模的训练集下,故障诊断准确率均有显著提升。 展开更多
关键词 柴油机 故障诊断 卷积神经网络 残差结构
在线阅读 下载PDF
基于边缘感知深度残差网络的带钢表面缺陷检测 被引量:1
19
作者 沈坤烨 周晓飞 +3 位作者 费晓波 陈雨中 张继勇 颜成钢 《应用科学学报》 CAS CSCD 北大核心 2023年第6期978-988,共11页
基于深度学习的显著目标检测方法已被用于带钢表面缺陷检测中,但仍存在模型收敛速度慢、检测结果边缘不清晰等问题。针对现有问题,本文提出了基于边缘感知深度残差网络(boundary-aware deeply residual network, BADRNet),以此进行带钢... 基于深度学习的显著目标检测方法已被用于带钢表面缺陷检测中,但仍存在模型收敛速度慢、检测结果边缘不清晰等问题。针对现有问题,本文提出了基于边缘感知深度残差网络(boundary-aware deeply residual network, BADRNet),以此进行带钢表面缺陷的显著目标检测。将边缘信息引入至缺陷检测任务中,解决了因目标尺寸多样性带来的检测结果边缘不清晰的问题;通过在边缘提取、显著特征融合部分采用具有残差结构的3个卷积层作为基本块,提高了训练效率且保持原有的检测精度不变。在公开的SD-saliency-900数据集上的实验结果表明,所提模型相比于现有模型,在6个评价指标上均取得了最优效果。BADRNet比当前最优的EDRNet在S-measure指标上提升了1.6%,同时对于缺陷区域边缘的检测效果具有明显提升。 展开更多
关键词 显著性检测 缺陷检测 深度学习 残差结构 边缘特征
在线阅读 下载PDF
基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断
20
作者 戚晓利 王兆俊 +3 位作者 毛俊懿 王志文 崔德海 赵方祥 《振动与冲击》 EI CSCD 北大核心 2024年第11期165-175,共11页
针对现有深度卷积神经网络对滚动轴承混合故障诊断效果不佳以及模型复杂度过高导致计算成本过大等问题,提出了一种基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断方法。该模型由RegNet-CSAM网络和ZOA-KELM分类算法组成。首先,将融合... 针对现有深度卷积神经网络对滚动轴承混合故障诊断效果不佳以及模型复杂度过高导致计算成本过大等问题,提出了一种基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断方法。该模型由RegNet-CSAM网络和ZOA-KELM分类算法组成。首先,将融合了通道和空间特征的注意力机制CSAM与组卷积残差模块结合,提升该结构的表征能力,由此构建的RegNet-CSAM网络,模型复杂度为0.48GF;其次,在分类阶段将斑马优化核极限学习机(ZOA-KELM)替代原来网络中使用的Softmax函数完成最后的分类任务。滚动轴承故障诊断试验结果表明,RegNet网络对滚动轴承混合故障样本容易产生误判,CSAM的融入虽将RegNet网络的分类精度进一步提高,但是仍然存在一定程度的滚动轴承混合故障误判问题;而将ZOA-KELM替代Softmax函数后再对RegNet-CSAM网络输出特征进行分类,能够有效识别出滚动轴承的单一和混合故障,准确率达到了99.92%。所提方法对比其他网络,诊断精度最大提升5.02%,模型复杂度最大缩减32倍。 展开更多
关键词 故障诊断 滚动轴承 组卷积残差结构 注意力机制 斑马优化核极限学习机(ZOA-KELM)
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部