期刊文献+
共找到126篇文章
< 1 2 7 >
每页显示 20 50 100
DenseNet和SeNet融合残差结构的DR分类方法 被引量:4
1
作者 宋鹏飞 吴云 《计算机应用研究》 CSCD 北大核心 2024年第3期928-932,950,共6页
糖尿病性视网膜病变(diabetic retinopathy,DR)是糖尿病在发病过程中影响视网膜的症状。针对模型下采样过程中特征提取DR图像微动脉瘤等病灶区域信息丢失问题,提出了一种DenseNet融合残差结构的模块。该模块首先连接两个连续的dense blo... 糖尿病性视网膜病变(diabetic retinopathy,DR)是糖尿病在发病过程中影响视网膜的症状。针对模型下采样过程中特征提取DR图像微动脉瘤等病灶区域信息丢失问题,提出了一种DenseNet融合残差结构的模块。该模块首先连接两个连续的dense block,然后利用残差结构对特征信息求和,并行融合处理特征图像信息,以防止有效特征信息的丢失,最后残差连接两个含有dropout的卷积块,抑制过拟合现象。针对以往卷积操作中未对病变区域的特征图通道加权的问题,提出了一种SeNet融合残差结构的模块。该模块首先连接SeNet,把全局平均池化和全局最大池化的特征信息相加,以提高有效通道信息的利用率,然后通过Conv1×1的残差方式来保证特征图信息的完整性。基于以上两个模块的设计,提出了一种DenseNet和SeNet融合残差结构的DR分类方法。该模型在APTOS2019数据集上的精确度达到89.8%,特异性达到97.0%,在Messidor-2数据集上的精确度达到78.8%,特异性达到91.9%,能够有效地提高视网膜图像病变程度的分类能力。 展开更多
关键词 糖尿病性视网膜病变 DenseNet SeNet 残差结构
在线阅读 下载PDF
采用残差结构和卷积神经网络的铣刀磨损研究
2
作者 程胜明 王雅君 +1 位作者 张昕晨 冷峻宇 《机械科学与技术》 CSCD 北大核心 2024年第8期1403-1410,共8页
对于传统的卷积神经网络准确率低的问题,提高刀具磨损监测的准确性,提出一种具有残差结构的一维卷积神经网络。模型中采用两个残差块,残差结构能够跳跃一部分卷积层减少模型的训练时间,并将信息保留下来与下一层输出连接起来。采集的信... 对于传统的卷积神经网络准确率低的问题,提高刀具磨损监测的准确性,提出一种具有残差结构的一维卷积神经网络。模型中采用两个残差块,残差结构能够跳跃一部分卷积层减少模型的训练时间,并将信息保留下来与下一层输出连接起来。采集的信息具有多维性,卷积神经网络能够自适应地提取相关特征,比传统机器学习需要人工依靠经验来提取特征更具有可靠性。实验结果表明,具有残差结构的卷积神经网络比传统的卷积神经网络不仅有较低的损失函数值,在准确度方面也有很好表现,提高了刀具磨损分类的精度。 展开更多
关键词 一维卷积 残差结构 刀具磨损监测 机器学习
在线阅读 下载PDF
基于残差结构的棉花异性纤维检测算法 被引量:2
3
作者 师红宇 位营杰 +1 位作者 管声启 李怡 《纺织学报》 EI CAS CSCD 北大核心 2023年第12期35-42,共8页
针对棉花中异性纤维检测精度低、异性纤维隐藏或边角位置不易识别等原因导致检测效果不佳的问题,提出一种基于残差结构的棉花异性纤维检测算法。首先,针对异性纤维检测目标,提出一种棉花异性纤维在线检测方案;其次,针对异性纤维颜色、... 针对棉花中异性纤维检测精度低、异性纤维隐藏或边角位置不易识别等原因导致检测效果不佳的问题,提出一种基于残差结构的棉花异性纤维检测算法。首先,针对异性纤维检测目标,提出一种棉花异性纤维在线检测方案;其次,针对异性纤维颜色、纹理、位置等特征,构建深浅层混合数据集;在此基础上设计了残差结构的异性纤维检测网络模型算法,解决了现有检测算法精度低、异性纤维隐藏或边角位置的问题;最后,将该算法与传统经典算法对比实验。结果表明:在深浅层混合数据集下,与经典算法对比,该算法具有较高的准确性和实时性,其平均检测准确率达到88.48%,1张图像的检测速度为0.019 s,满足工业现场实时检测需求,为棉花中异性纤维检测提供了一种新方法。 展开更多
关键词 异性纤维检测 棉花 注意力机制 残差结构 深度可分离卷积 网络模型
在线阅读 下载PDF
一种基于残差结构的车道线检测方法 被引量:5
4
作者 郑河荣 程思思 +1 位作者 王文华 张梦蝶 《浙江工业大学学报》 CAS 北大核心 2022年第4期365-371,共7页
提出了一种基于车道线特征的残差因子分解网络实现精确车道线分割的方法,该法采用笔者所提的语义分割网络实现车道线语义分割,通过编码器提取车道线的特征信息,再使用解码器恢复图像信息。在编码器中增加的残差层能更好地处理边缘信息... 提出了一种基于车道线特征的残差因子分解网络实现精确车道线分割的方法,该法采用笔者所提的语义分割网络实现车道线语义分割,通过编码器提取车道线的特征信息,再使用解码器恢复图像信息。在编码器中增加的残差层能更好地处理边缘信息与相似信息,提取到更多的特征信息。用霍夫线拟合方法组成一条可视化的车道线。训练时先对车道线分割训练集进行增强,使用对抗生成网络对公开数据集进行数据增强,自动实现白天到夜晚的转换,生成弱光照场景下的图片,提高训练数据的泛化性。实验证明:笔者算法在保持速度的前提下,能够大大提高分割准确率,与其他车道线分割算法相比,CULane数据集的准确率可提高到74.7%。 展开更多
关键词 生成对抗网络 语义分割网络 残差结构
在线阅读 下载PDF
基于改进宽残差结构的接触网吊弦状态辨识分类网络
5
作者 金炜东 张志军 唐鹏 《铁道学报》 EI CAS CSCD 北大核心 2022年第10期40-45,共6页
铁路接触网系统中吊弦的工作状态对机车运行至关重要。视频图像的接触网吊弦状态快速准确识别备受关注,因吊弦图像数据的特殊性导致现有网络模型识别精度较低。本文针对吊弦数据特征设计分类网络结构,提出适应接触网吊弦状态识别的VRNe... 铁路接触网系统中吊弦的工作状态对机车运行至关重要。视频图像的接触网吊弦状态快速准确识别备受关注,因吊弦图像数据的特殊性导致现有网络模型识别精度较低。本文针对吊弦数据特征设计分类网络结构,提出适应接触网吊弦状态识别的VRNet分类网络。VRNet的核心为嵌入了注意力机制的宽残差结构,将此结构作为特征提取模块取代VGG-16中的一般卷积,改变其单一的平原结构。并使用Ghost机制替换宽残差结构中的普通卷积,大幅降低了模型的参数量和运算量。VRNet分类网络在吊弦故障分类实验中精度达到97%,优于其他分类网络,并在相关应用研究中表现出优良性能。 展开更多
关键词 吊弦 注意力机制 残差结构 VGG-16 Ghost机制
在线阅读 下载PDF
基于改进卷积注意力模块与残差结构的SSD网络 被引量:6
6
作者 张侣 周博文 吴亮红 《计算机科学》 CSCD 北大核心 2022年第3期211-217,共7页
SSD(Single Shot Multibox Detector)是一种基于卷积神经网络的单阶检测算法,相比双阶检测算法,它在保证一定精度的同时显著提高了检测速度,但仍难以满足很多实际应用,尤其是在小目标检测任务中,检测精度更是难以满足需求。针对该不足,... SSD(Single Shot Multibox Detector)是一种基于卷积神经网络的单阶检测算法,相比双阶检测算法,它在保证一定精度的同时显著提高了检测速度,但仍难以满足很多实际应用,尤其是在小目标检测任务中,检测精度更是难以满足需求。针对该不足,文中提出了一种基于改进残差结构与卷积注意力模块的特征提取网络Res-Am CNN(Residual with Attention Module Convolutional Neural Networks),大幅提高了网络的特征提取能力,并在原始SSD金字塔结构中引入上采样加法融合(Additive Fusion with Upsample,AFU)来进行特征融合,增强了浅层特征的表征能力。在PASCAL VOC数据集上的实验结果表明,相比原始SSD网络和主流的检测网络,Res-Am&AFU SSD(SSD with Res-Am CNN and AFU)网络在VOC测试集上的平均精度均值(mean Average Precision,mAP)达到69.1%,在精度上领先单阶网络,接近双阶网络,在检测速度上远快于双阶网络。在小目标测试集上的实验结果表明,Res-Am&AFU SSD网络的mAP为67.2%,比原始SSD提高了9.4%,且该方法具有更加灵活、无需预训练等优点。 展开更多
关键词 SSD网络 目标检测 卷积神经网络 残差结构 注意力机制
在线阅读 下载PDF
基于GhostNet残差结构的轻量化饮料识别网络 被引量:19
7
作者 曹远杰 高瑜翔 《计算机工程》 CAS CSCD 北大核心 2022年第3期310-314,共5页
YOLOv4-Tiny目标检测网络算法存在参数多和计算量大等问题,无法部署在资源有限的平台上。提出一种基于GhostNet残差结构的主干轻量级目标检测网络算法YOLO-GhostNet。该算法采用GhostNet结构将普通卷积分成两步,即使用较少的卷积核生成... YOLOv4-Tiny目标检测网络算法存在参数多和计算量大等问题,无法部署在资源有限的平台上。提出一种基于GhostNet残差结构的主干轻量级目标检测网络算法YOLO-GhostNet。该算法采用GhostNet结构将普通卷积分成两步,即使用较少的卷积核生成一部分特征图,对生成的特征图通过简单计算获得另一部分特征图,并将两组特征图进行拼接,以减少计算所需资源与参数量。通过GhostNet构建残差结构的YOLO-GhostNet算法在经过批量归一化层优化后模型尺寸只有2.18 MB,较YOLOv4-Tiny算法模型尺寸减小90%。YOLO-GhostNet算法在GPU加速环境下平均处理图片速度比YOLOv4-Tiny算法提高24%,CPU处理速度比YOLOv4-Tiny加快56%。实验结果表明,该算法在饮料测试集中的平均精确度均值达到79.43%,相比YOLOv4-Tiny算法,其在精度无损失情况下能够大幅降低网络计算量和参数量,同时加快推理速度,更适合部署于资源算力不足的嵌入式设备。 展开更多
关键词 深度学习 卷积神经网络 YOLOv4-Tiny算法 残差结构 轻量化 目标检测
在线阅读 下载PDF
融合注意力机制与逆残差结构的轻量级钻机目标检测方法 被引量:13
8
作者 张栋 姜媛媛 《电子测量与仪器学报》 CSCD 北大核心 2022年第11期201-210,共10页
为实现煤矿下定向钻进钻机钻孔深度的精准测量,提出一种融合注意力机制与逆残差结构的轻量级钻机目标检测网络(GCI-YOLOv4),通过自动、快速及准确检测记录钻机的运动轨迹,获取打入钻杆数量,计算出钻孔深度。针对煤矿下色域区分度低问题... 为实现煤矿下定向钻进钻机钻孔深度的精准测量,提出一种融合注意力机制与逆残差结构的轻量级钻机目标检测网络(GCI-YOLOv4),通过自动、快速及准确检测记录钻机的运动轨迹,获取打入钻杆数量,计算出钻孔深度。针对煤矿下色域区分度低问题,采用GhostNet作为特征提取网络去除复杂背景的冗余特征,同时轻量化模型,加快推理速度。针对煤矿井下光照不均导致钻机目标显著度低的问题,引入注意力模块增强钻机在复杂背景中的显著度。针对钻机高速运动时难以被准确检测的问题,引入逆残差结构,提取更丰富语义特征的同时保持速度与精度的均衡。为保证模型的准确性和可靠性,将提出的检测算法与5种经典目标检测算法进行对比。实验结果表明,GCI-YOLOv4可以较好的解决煤矿下背景色域区分度低、钻机高速运动以及受光照不均等问题,平均检测精度达到99.49%,检测速度达到58.10 FPS,性能优于经典目标检测算法。将GCI-YOLOv4部署在工作面现场进行测试,能够准确获取钻机的运动轨迹,通过滤波处理统计上升沿计算钻杆数量,钻杆计数精度达到99.4%,精确计算出钻孔深度,验证了该方法的可行性和实用性。 展开更多
关键词 目标检测 YOLOv4 GhostNet 注意力模块 残差结构 钻杆计数
在线阅读 下载PDF
基于高效可扩展改进残差结构神经网络的舰船目标识别技术 被引量:10
9
作者 付哲泉 李尚生 +2 位作者 李相平 但波 王旭坤 《电子与信息学报》 EI CSCD 北大核心 2020年第12期3005-3012,共8页
神经网络的深度在一定范围内与识别效果成正相关,为解决超出范围后网络层数增加识别准确率却下降的模型饱和问题,该文提出一种具有高效的微块内部结构和残差网络结构的神经网络模型,用于对舰船目标基于高分辨距离像的分类识别。该方法... 神经网络的深度在一定范围内与识别效果成正相关,为解决超出范围后网络层数增加识别准确率却下降的模型饱和问题,该文提出一种具有高效的微块内部结构和残差网络结构的神经网络模型,用于对舰船目标基于高分辨距离像的分类识别。该方法利用具有小尺度卷积核的卷积模块提取目标的稳定可分特征,同时利用联合损失函数约束目标特征的类内距离提高识别能力。仿真结果表明,该模型相比于其他常见网络结构,在模型参数更少的情况下,识别效果更好,同时具有较强的噪声鲁棒性。 展开更多
关键词 目标识别 高分辨距离像 神经网络 残差结构
在线阅读 下载PDF
基于特征融合与软阈值残差的稠密点云几何压缩网络
10
作者 朱威 施海东 +2 位作者 汪宵 郑雅羽 何德峰 《小型微型计算机系统》 北大核心 2025年第3期662-671,共10页
点云是一种重要的三维数据表示形式,但其巨大的原始数据量阻碍了它在网络传输和存储记录等方面的应用.因此,本文提出了一种基于多尺度特征融合与软阈值残差结构的点云几何压缩网络,实现了对三维稠密点云的高效压缩.首先通过逐步融合多... 点云是一种重要的三维数据表示形式,但其巨大的原始数据量阻碍了它在网络传输和存储记录等方面的应用.因此,本文提出了一种基于多尺度特征融合与软阈值残差结构的点云几何压缩网络,实现了对三维稠密点云的高效压缩.首先通过逐步融合多尺度特征和构建软阈值注意力机制,实现特征加强和冗杂特征的消除,以解决体素化过程中特征丢失等问题.此外,采用构建特征掩膜层的方法,加速模型收敛.最后,引入动态非等比例损失函数提高网络的学习效果.实验结果表明,该方法在MVUB、8iVFB和Owlii数据集上相较于现有方法同样的点云分辨率下,具有更高的点云重建质量和较快的编解码速度. 展开更多
关键词 稠密点云压缩 多尺度特征 软阈值残差结构 特征掩膜 动态损失函数
在线阅读 下载PDF
基于残差全局上下文注意和跨层特征融合的去雾网络
11
作者 杨燕 陈飞 《北京航空航天大学学报》 北大核心 2025年第4期1048-1058,共11页
基于深度学习的图像去雾算法通常在提取特征时使用传统的卷积层,容易造成图像的细节和边缘等信息丢失,提取特征时忽略图像的位置信息,融合特征时忽略图像原始信息,不能恢复出结构完整、清晰的高质量无雾图像。针对该问题,提出了一种基... 基于深度学习的图像去雾算法通常在提取特征时使用传统的卷积层,容易造成图像的细节和边缘等信息丢失,提取特征时忽略图像的位置信息,融合特征时忽略图像原始信息,不能恢复出结构完整、清晰的高质量无雾图像。针对该问题,提出了一种基于残差全局上下文注意和跨层特征融合的去雾算法。对提出的残差全局上下文注意块串行得到残差组结构,并对网络的前2层(即浅层)进行特征提取,得到浅层丰富的上下文信息;引入坐标注意力,建立具有位置信息的注意力图,并将其应用于残差上下文特征提取,放置在网络的第3层(即深层),提取更深层次的语义信息;在网络中间层,通过跨层融合来自不同分辨率流的特征信息,增强深浅层的信息交换,达到特征增强的目的;聚合网络得到具有丰富语义信息的特征与原始输入特征,提升复原效果。在RESIDE和Haze4K数据集上的实验结果表明:所提算法在视觉效果与客观指标上都取得了较好的效果。 展开更多
关键词 图像去雾 深度学习 残差结构 注意力机制 特征融合
在线阅读 下载PDF
基于残差U-net网络的地震资料分辨率提高方法
12
作者 董博艺 张进 《中国海洋大学学报(自然科学版)》 CAS 北大核心 2025年第1期140-148,共9页
高分辨率地震资料处理是获取高品质地震资料、实现薄储层良好地震地质解释的关键。传统提高地震分辨率的方法应用条件苛刻,关键参数求取复杂,在实际应用中受到诸多限制。深度学习中的U-net网络以纯数据驱动的优势,可学习低分辨率地震记... 高分辨率地震资料处理是获取高品质地震资料、实现薄储层良好地震地质解释的关键。传统提高地震分辨率的方法应用条件苛刻,关键参数求取复杂,在实际应用中受到诸多限制。深度学习中的U-net网络以纯数据驱动的优势,可学习低分辨率地震记录到高分辨率标签的非线性关系,实现地震资料的高分辨率处理。本文设计了残差U-net网络结构,同时提出了基于概率密度函数控制的同分布反射系数集生成方法,将测井反射系数的概率密度函数作为一种先验约束信息融入训练样本,不仅保证了足够的同分布样本来训练网络,还确保了训练样本更符合工区实际情况,以此提高模型预测的准确性。模型测试和实际资料应用结果表明,本文提出的方法能够有效应用于地震资料分辨率的提高,同时拓宽频带。 展开更多
关键词 提高分辨率 U-net 残差结构 同分布
在线阅读 下载PDF
局部注意力引导下的全局池化残差分类网络 被引量:2
13
作者 姜文涛 董睿 张晟翀 《光电工程》 CAS CSCD 北大核心 2024年第7期107-124,共18页
大部分注意力机制虽然能增强图像特征,但没有考虑局部特征的关联性影响特征整体的问题。针对以上问题,本文提出局部注意力引导下的全局池化残差分类网络(MSLENet)。MSLENet的基线网络为ResNet34,首先改变首层结构,保留图像重要信息;其... 大部分注意力机制虽然能增强图像特征,但没有考虑局部特征的关联性影响特征整体的问题。针对以上问题,本文提出局部注意力引导下的全局池化残差分类网络(MSLENet)。MSLENet的基线网络为ResNet34,首先改变首层结构,保留图像重要信息;其次提出多分割局部增强注意力机制(MSLE)模块,MSLE模块将图像整体分割成多个小图像,增强每个小图像的局部特征,通过特征组交互的方式将局部重要特征引导到全局特征中;最后提出池化残差(PR)模块来处理ResNet残差结构丢失信息的问题,提高各层之间的信息利用率。实验结果表明,MSLENet通过增强局部特征的关联性,在多个数据集上均有良好的效果,有效地提高了网络的表达能力。 展开更多
关键词 图像分类 注意力机制 残差结构 局部特征 全局特征 关联性
在线阅读 下载PDF
基于残差单元与注意力门的非对称编解码海杂波抑制网络
14
作者 陈胜垚 胡晨康 +2 位作者 程智勇 席峰 刘中 《电子学报》 EI CAS CSCD 北大核心 2024年第8期2628-2640,共13页
针对非均匀海杂波环境下弱小目标检测困难的问题,本文基于复值残差单元和注意力门机制,提出一种用于海杂波抑制的非对称编解码网络(Asymmetric Encoder-Decoder Network,AED-Net).该网络以雷达回波经匹配滤波后得到的复值信号为输入,利... 针对非均匀海杂波环境下弱小目标检测困难的问题,本文基于复值残差单元和注意力门机制,提出一种用于海杂波抑制的非对称编解码网络(Asymmetric Encoder-Decoder Network,AED-Net).该网络以雷达回波经匹配滤波后得到的复值信号为输入,利用复值残差单元取代常规卷积单元进行弱小目标和海杂波特征的提取,增强网络特征提取能力的同时避免特征信息退化.然后采用注意力门模块将编码路径各模块提取的特征信息分别送入到解码路径对应的模块.最终输出海杂波抑制后的复值信号.由于各注意力门的输入和输出维度可根据网络结构自主选择,该网络设计是一种非对称编解码结构.与典型对称编解码网络UNet相比,复值残差单元与注意力门的引入显著降低了特征信息的冗余度,增强特征信息的提取与传递,提升了海杂波抑制性能.与此同时,复值残差单元的参数规模远小于卷积单元,而注意力门的引入也有效减少解码路径单元的数量,整个网络的参数规模显著减小.基于海杂波实测数据的实验结果表明,与典型复值UNet(Complex Value-UNet,CV-UNet)网络相比,AED-Net的输出信杂比平均提升9 dB,有效工作的最低信杂比降低了3 dB,模型参数量和计算量分别减少57.8%、50%. 展开更多
关键词 海杂波抑制 编解码网络 残差结构 注意力门 复值信号
在线阅读 下载PDF
基于特征残差融合的显著性检测网络
15
作者 徐玉菁 李洪鹏 《计算机应用与软件》 北大核心 2024年第5期166-170,196,共6页
当前的显著性检测任务得益于卷积神经网络模型的监督训练能够达到很好的效果,但是模型中的显著性特征如何有效地利用仍是一个关键的问题。不同层级的显著性特征信息融合能够达到互补的效果进而促进最终预测的效果,因此提出一个基于局部... 当前的显著性检测任务得益于卷积神经网络模型的监督训练能够达到很好的效果,但是模型中的显著性特征如何有效地利用仍是一个关键的问题。不同层级的显著性特征信息融合能够达到互补的效果进而促进最终预测的效果,因此提出一个基于局部信息残差融合的网络架构。该结构是对局部范围的卷积层的特征进行残差式的融合,以此降低由于采样操作导致引入噪点的风险。再将融合的新特征图由深层递进式地传递到浅层并输出,进而获得最终的预测结果。 展开更多
关键词 显著性目标检测 残差结构 深度学习 计算机视觉
在线阅读 下载PDF
基于通道残差嵌套U结构的CT影像肺结节分割方法 被引量:1
16
作者 蒋武君 支力佳 +1 位作者 张少敏 周涛 《图学学报》 CSCD 北大核心 2023年第5期879-889,共11页
早诊断早治疗对提升肺癌的存活率至关重要。肺结节是肺癌早期主要表现,但其异质性特征增加了计算机断层扫描对肺结节的检测难度,降低了分割结果的精确度。为提高肺结节分割结果的完整性和精确度,提出三维通道残差嵌套U网络(CR U2Net)。... 早诊断早治疗对提升肺癌的存活率至关重要。肺结节是肺癌早期主要表现,但其异质性特征增加了计算机断层扫描对肺结节的检测难度,降低了分割结果的精确度。为提高肺结节分割结果的完整性和精确度,提出三维通道残差嵌套U网络(CR U2Net)。浅层特征同时包含病灶细节和噪声信息,提出浅层信息处理U结构平衡噪声信息的干扰;为加强不同层特征信息的交互,丰富特征表达和传递,提出通道残差结构,配合嵌套U结构实现特征信息的提取优化;考虑到浅层特征包含空间细节信息而深层特征具有语义抽象性,设计通道挤压U结构实现不同语义级别特征有效融合;将上述模块集成到UNet中构建出基于嵌套U结构的肺结节分割模型。提出的模型在Lung Image Database Consortium and Image Database Resource Initiative数据集中进行训练,达到了83.83%的Dice系数。优于多数现有肺结节分割方法且与UNet,UNet++以及PCAMNet网络相比领先了3.98%,1.96%和1.26%;针对网络结构进行有效性验证,结果表明各模块均发挥作用,在可接受参数量和计算量的情况下达到最优性能。 展开更多
关键词 深度神经网络 肺结节分割 通道残差结构 嵌套U结构 通道挤压模块
在线阅读 下载PDF
基于故障映射向量和结构化残差的主元分析(PCA)故障隔离 被引量:8
17
作者 李荣雨 荣冈 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第6期1099-1104,共6页
在基于主元分析(PCA)的多变量统计过程监控中,现有方法很难直观有效地完全实现故障的隔离与诊断.本文通过分析各类故障的数学模型,提出一种基于结构化残差和故障映射向量的隔离方法,并推导出PCA模型下过程故障映射向量方向的提取算法,... 在基于主元分析(PCA)的多变量统计过程监控中,现有方法很难直观有效地完全实现故障的隔离与诊断.本文通过分析各类故障的数学模型,提出一种基于结构化残差和故障映射向量的隔离方法,并推导出PCA模型下过程故障映射向量方向的提取算法,进而实现了传感器/执行器故障和过程故障的故障隔离,在CSTR仿真上的研究进一步验证了该法的有效性. 展开更多
关键词 主元分析 故障隔离 过程故障 结构残差 映射向量
在线阅读 下载PDF
结构残差在基于SDG故障分离中的应用 被引量:2
18
作者 杨帆 萧德云 《控制工程》 CSCD 2007年第3期320-324,共5页
符号有向图(SDG)是大规模复杂系统中故障传播关系的描述模型,但它仅能通过在相容通路上的定性推理进行故障分离,因此有着明显的局限性。而结构残差是定量故障分离的成熟方法,将其引入基于SDG的故障分离中,用以提高系统故障分离的能力,弥... 符号有向图(SDG)是大规模复杂系统中故障传播关系的描述模型,但它仅能通过在相容通路上的定性推理进行故障分离,因此有着明显的局限性。而结构残差是定量故障分离的成熟方法,将其引入基于SDG的故障分离中,用以提高系统故障分离的能力,弥补SDG方法的不足。具体的做法是将SDG转化为结构残差的描述形式,再利用结构残差的基本思想,分别就变量是否完全可检测的情况给出了具体的故障分离方法。这样做可以提高系统故障分离的鲁棒性和准确性。应用实例表明,该方法可通过残差计算,准确判断故障源,实现故障分离。 展开更多
关键词 符号有向图(SDG) 结构残差 故障诊断 故障分离
在线阅读 下载PDF
DRT Net:面向特征增强的双残差Res-Transformer肺炎识别模型
19
作者 周涛 彭彩月 +3 位作者 杜玉虎 党培 刘凤珍 陆惠玲 《光学精密工程》 EI CAS CSCD 北大核心 2024年第5期714-726,共13页
针对肺部X射线图像的病灶区域较小、形状复杂,与正常组织间的边界模糊,使得肺炎图像中的病灶特征提取不充分的问题,提出了一个面向特征增强的双残差Res-Transformer肺炎识别模型,设计3种不同的特征增强策略对模型特征提取能力进行增强... 针对肺部X射线图像的病灶区域较小、形状复杂,与正常组织间的边界模糊,使得肺炎图像中的病灶特征提取不充分的问题,提出了一个面向特征增强的双残差Res-Transformer肺炎识别模型,设计3种不同的特征增强策略对模型特征提取能力进行增强。设计了组注意力双残差模块(GADRM),采用双残差结构进行高效的特征融合,将双残差结构与通道混洗、通道注意力、空间注意力结合,增强模型对于病灶区域特征的提取能力;在网络的高层采用全局局部特征提取模块(GLFEM),结合CNN和Transformer的优势使网络充分提取图像的全局和局部特征,获得高层语义信息的全局特征,进一步增强网络的语义特征提取能力;设计了跨层双注意力特征融合模块(CDAFFM),融合浅层网络的空间信息以及深层网络的通道信息,对网络提取到的跨层特征进行增强。为了验证本文模型的有效性,分别在COVID-19 CHEST X-RAY数据集上进行消融实验和对比实验。实验结果表明,本文所提出网络的准确率、精确率、召回率,F1值和AUC值分别为98.41%,94.42%,94.20%,94.26%和99.65%。DRT Net能够帮助放射科医生使用胸部X光片对肺炎进行诊断,具有重要的临床作用。 展开更多
关键词 肺炎识别 X射线图像 特征增强 残差结构 Transformer
在线阅读 下载PDF
结合变种残差模型和Transformer的城市公路短时交通流预测
20
作者 杨鑫 陈雪妮 +1 位作者 吴春江 周世杰 《计算机应用》 CSCD 北大核心 2024年第9期2947-2951,共5页
城市公路交通流的预测受到历史交通流量和相邻车道交通流量的影响,蕴含了复杂的时空特征。针对传统交通流预测模型卷积长短时记忆(ConvLSTM)网络进行交通流预测时,未将时空特征分开提取而造成的特征提取不充分、特征信息混淆和特征信息... 城市公路交通流的预测受到历史交通流量和相邻车道交通流量的影响,蕴含了复杂的时空特征。针对传统交通流预测模型卷积长短时记忆(ConvLSTM)网络进行交通流预测时,未将时空特征分开提取而造成的特征提取不充分、特征信息混淆和特征信息缺失等问题,对ConvLSTM模型作出改进。首先,提取每个采样时刻的交通流数据的短期时间特征和空间特征,并在特定的维度下将交通流的短期时空特征融合;其次,进行残差映射;最后,将映射后的短期时空特征交由Transformer模型捕捉交通流数据长期的时空特征,并根据所捕捉的长期特征对未来时刻每个采样点交通流进行预测。使用加州城市快速路数据对模型进行验证,以平均绝对误差(MAE)作为模型评价指标时,所提模型相较于Conv-Transformer模型,预测精度提高了18%,验证了所提模型的有效性。 展开更多
关键词 短时交通流预测 交通流 时空特征提取 残差结构 TRANSFORMER 组合模型
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部