期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
基于一维残差卷积神经网络的Pi2脉动识别模型 被引量:1
1
作者 张怡悦 邹自明 方少峰 《空间科学学报》 北大核心 2025年第1期66-81,共16页
Pi2脉动是一种不规则的超低频波(Ultra-Low Frequency,ULF),是磁层与电离层耦合的重要瞬态响应,其发生与亚暴爆发有密切的关系.Pi2脉动作为地球磁层中的一种扰动现象,其发生信号隐藏在地磁场分量观测数据中.面对持续增长的观测数据量,... Pi2脉动是一种不规则的超低频波(Ultra-Low Frequency,ULF),是磁层与电离层耦合的重要瞬态响应,其发生与亚暴爆发有密切的关系.Pi2脉动作为地球磁层中的一种扰动现象,其发生信号隐藏在地磁场分量观测数据中.面对持续增长的观测数据量,如何有效地判断某段地磁场分量观测数据中是否有Pi2脉动发生,是构建Pi2脉动识别模型的关键.利用子午工程磁通门磁力仪观测的地磁场分量数据,基于一维残差卷积神经网络(One-Dimensional Residual Convolutional Neural Network,1D-ResCNN),构建了一个端到端的Pi2脉动识别模型,用于判别某段地磁场分量观测数据中是否有Pi2脉动发生.实验结果表明,该模型与现有公开发表的Pi2脉动机器学习识别模型相比,具有更高的识别准确率和更低的虚报率、漏报率. 展开更多
关键词 Pi2脉动 Pi2脉动识别模型 一维残差卷积神经网络
在线阅读 下载PDF
基于ResNet残差神经网络识别的深部煤层显微组分和微裂缝分类——以鄂尔多斯盆地石炭系本溪组8~#煤层为例 被引量:1
2
作者 刘大锰 王子豪 +6 位作者 陈佳明 邱峰 朱凯 高羚杰 周柯宇 许少博 孙逢瑞 《石油与天然气地质》 CSCD 北大核心 2024年第6期1524-1536,共13页
显微组分和微裂缝是煤储层重要的微观特征,影响煤储层产气能力和力学性质。采集鄂尔多斯盆地深部煤层气井石炭系本溪组8^(#)煤层样品,运用ResNet残差神经网络识别方法,研究了显微组分和微裂缝发育特征。在煤样305个显微组分和65个微裂... 显微组分和微裂缝是煤储层重要的微观特征,影响煤储层产气能力和力学性质。采集鄂尔多斯盆地深部煤层气井石炭系本溪组8^(#)煤层样品,运用ResNet残差神经网络识别方法,研究了显微组分和微裂缝发育特征。在煤样305个显微组分和65个微裂缝图样本研究的基础上,建立了基于残差神经网络识别的煤岩显微组分和微裂缝识别方法,并利用残差神经网络技术对镜下数据进行反演,构建了深部煤储层显微组分和微裂缝的识别和分类模型。结合地质特征和聚类算法结果联合验证,模型具有可靠性。显微组分预测准确率为0.90,微裂缝预测准确率为0.80,可以有效预测煤岩显微组分和微裂缝类型。模型识别与预测表明裂缝形态与显微组分具有相关关系。裂缝的发育与显微组分中的镜质组关系最大,裂缝类别和数量的预测结果与显微组分发育的相吻合。 展开更多
关键词 分类模型 残差神经网络 显微组分 微裂缝 深部煤储层 煤层气 石炭系 鄂尔多斯盆地
在线阅读 下载PDF
基于残差神经网络的盾构土舱压力预测 被引量:1
3
作者 雒伟勃 李龙 +2 位作者 汪来 孙佳利 潘秋景 《隧道建设(中英文)》 CSCD 北大核心 2024年第11期2171-2180,共10页
土舱压力是保证盾构隧道施工安全和控制施工风险的关键参数之一。为此,提出一种基于残差神经网络的盾构土舱压力预测方法。首先,通过对南京地铁某盾构区间的掘进参数数据进行收集和分析,构建具有多个残差块的残差神经网络模型。然后,利... 土舱压力是保证盾构隧道施工安全和控制施工风险的关键参数之一。为此,提出一种基于残差神经网络的盾构土舱压力预测方法。首先,通过对南京地铁某盾构区间的掘进参数数据进行收集和分析,构建具有多个残差块的残差神经网络模型。然后,利用所建立的残差神经网络模型对盾构土舱压力进行预测,并评估模型对土舱压力的预测性能。最后,对残差神经网络的关键模型参数(包括残差块数目、网络宽度和学习率)进行参数分析,比较参数变化时土舱压力的预测性能,确定最佳的模型结构。并对模型关键参数进行分析。研究结果表明:1)所提出的残差神经网络模型可以较准确地预测盾构土舱压力,不同位置的土舱压力预测值与实际值接近;2)1#、2#、3#、4#、5#和6#土舱压力的决定系数(R 2)分别为0.95、0.96、0.94、0.90、0.91和0.96,均方根误差(E RMSE)介于0.017~0.023 MPa;3)相比于人工神经网络(ANN)、支持向量回归(SVR)和随机森林(RF)模型,残差神经网络模型对土舱压力的预测准确性更高。 展开更多
关键词 盾构隧道 土舱压力 残差神经网络 预测模型
在线阅读 下载PDF
炼铜转炉吹炼终点的神经网络和自适应残差补偿组合预报模型 被引量:13
4
作者 彭小奇 胡志坤 +2 位作者 梅炽 胡军 姚俊峰 《控制理论与应用》 EI CAS CSCD 北大核心 2002年第1期149-151,共3页
提出了基于改进的BP神经网络学习算法和自适应残差补偿算法的炼铜转炉吹炼终点组合预报模型 .利用某厂实际生产数据进行仿真运行的结果表明 ,本文建立的模型具有较高的预报精度和较强的实用性 。
关键词 炼铜 转炉 吹炼 神经网络 终点预报 自适应残差补偿 组合预报模型
在线阅读 下载PDF
一种基于改进ResNet18神经网络的苹果叶片病害识别方法
5
作者 陈诗瑶 孔淳 +2 位作者 冯峰 孙博 王志军 《山东农业科学》 北大核心 2024年第10期174-180,共7页
为有效提升苹果叶片病害识别的精度和效率,实现病害的及时防治进而提高苹果产量,本研究提出一种基于改进ResNet18神经网络的苹果叶片病害识别方法,可在提升模型识别性能的同时减少参数量和模型尺寸。首先,改进ResNet模型的残差结构,以... 为有效提升苹果叶片病害识别的精度和效率,实现病害的及时防治进而提高苹果产量,本研究提出一种基于改进ResNet18神经网络的苹果叶片病害识别方法,可在提升模型识别性能的同时减少参数量和模型尺寸。首先,改进ResNet模型的残差结构,以减少参数量,实现模型轻量化;其次,引入坐标注意力(CA)机制并进行迁移学习,进一步提升模型的泛化性能。将改进ResNet18模型与原始ResNet18神经网络进行对比实验,结果发现,改进模型的准确率提升了1.53个百分点,但模型参数量减少为原始模型的50.84%。表明本研究提出的改进ResNet18模型可有效识别苹果叶片病害,且方便移动端搭载。 展开更多
关键词 苹果叶片病害识别 卷积神经网络 resnet18模型 残差结构 坐标注意力机制 迁移学习
在线阅读 下载PDF
BP神经网络修正灰色残差组合模型方法在油液光谱分析中应用的研究 被引量:12
6
作者 刘玉兵 陈亚忠 +1 位作者 王晓东 李霞 《润滑与密封》 CAS CSCD 北大核心 2007年第3期172-174,共3页
提出了采用神经网络修正灰色残差组合模型对设备的磨损状态进行预测和诊断分析的方法。通过比较GM(1,1)模型、神经网络模型的预测结果,融合GM(GreyModel)模型与神经网络模型并构建组合模型进行油液光谱分析参数预测,可以克服单个模型所... 提出了采用神经网络修正灰色残差组合模型对设备的磨损状态进行预测和诊断分析的方法。通过比较GM(1,1)模型、神经网络模型的预测结果,融合GM(GreyModel)模型与神经网络模型并构建组合模型进行油液光谱分析参数预测,可以克服单个模型所存在的不足。结果证明,该组合模型方法在预测中是可行的,预测的误差最小。 展开更多
关键词 新陈代谢GM(1 1)模型 BP神经网络模型 灰色残差序列 光谱分析 参数预测
在线阅读 下载PDF
GM(1,1)残差修正的季节性神经网络预测模型及其应用 被引量:5
7
作者 叶明全 胡学钢 《计算机工程与应用》 CSCD 北大核心 2005年第1期194-196,共3页
季节性时间序列具有增长性和波动性的二重趋势。灰色模型GM(1,1)能反映时间序列的总体变化趋势,但不能很好反映其季节性波动变化的具体特征,在模拟与预测季节性时间序列中有明显的局限性。文中介绍了季节性神经网络建立的残差修正模型... 季节性时间序列具有增长性和波动性的二重趋势。灰色模型GM(1,1)能反映时间序列的总体变化趋势,但不能很好反映其季节性波动变化的具体特征,在模拟与预测季节性时间序列中有明显的局限性。文中介绍了季节性神经网络建立的残差修正模型。通过季节性神经网络模型对GM(1,1)的残差序列进行分析,提取其中的非线性成分作为预测时的补偿项,以进行残差修正,从而形成GMSANN叠合预测模型。实例表明,所建模型具有较好的适应性和预测精度。 展开更多
关键词 季节性时间序列 GM(1 1)模型 残差修正 季节性神经网络
在线阅读 下载PDF
具有自适应残差补偿的神经网络预报模型设计与应用 被引量:1
8
作者 邵义元 胡志坤 《四川大学学报(工程科学版)》 EI CAS CSCD 2003年第5期115-118,共4页
在对样本数据进行预处理的基础上,建立一个具有自适应残差补偿的改进BP神经网络动态预报模型,并对神经网络的学习参数进行自适应调整。将该模型应用于铜锍吹炼过程所需的氧气量进行预报。仿真结果表明,预报最大相对误差为3.97%,最小相... 在对样本数据进行预处理的基础上,建立一个具有自适应残差补偿的改进BP神经网络动态预报模型,并对神经网络的学习参数进行自适应调整。将该模型应用于铜锍吹炼过程所需的氧气量进行预报。仿真结果表明,预报最大相对误差为3.97%,最小相对误差可以达到0.11%。该模型已应用于实际生产,具有精确度高、实用的优点。 展开更多
关键词 铜锍吹炼 样本预处理 神经网络 预报模型 自适应残差补偿
在线阅读 下载PDF
残差神经网络模型在木质板材缺陷分类中的应用 被引量:4
9
作者 凌嘉欣 谢永华 《东北林业大学学报》 CSCD 北大核心 2021年第8期111-116,共6页
以虫眼、活节、死节3种缺陷的板材为研究对象,建立了小型样本库,采用数据增强方法,对图片进行旋转、平移、尺度变换、灰度变换等方式处理,使样本库扩容到10687张图片,其中7480张图片作为训练集、2137张图片作为验证集、1070张图片作为... 以虫眼、活节、死节3种缺陷的板材为研究对象,建立了小型样本库,采用数据增强方法,对图片进行旋转、平移、尺度变换、灰度变换等方式处理,使样本库扩容到10687张图片,其中7480张图片作为训练集、2137张图片作为验证集、1070张图片作为测试集;应用超分辨率测试序列(VGG)网络模型、谷歌网络模型(GoogLeNet)、残差神经网络模型(ResNet)对木质板材表面缺陷进行分类,依据分类精度,遴选识别效果较好的木质板材缺陷分类方法。结果表明:残差神经网络模型在不同的卷积层时分类精度均在80%以上,而改进的残差神经网络模型在模型结构为50层时的分类准确率高达98.63%,模型能较好地适用于木质板材表面缺陷分类。 展开更多
关键词 木质板材缺陷 木材缺陷分类方法 残差神经网络模型
在线阅读 下载PDF
基于非等时距加权灰色模型与神经网络的组合预测算法 被引量:39
10
作者 韩晋 杨岳 +1 位作者 陈峰 李雄兵 《应用数学和力学》 CSCD 北大核心 2013年第4期408-419,共12页
非等时距预测算法在不等时间间隔序列的趋势分析与预测方面具有重要作用.在传统灰色预测理论的基础上,提出一种基于非等时距加权灰色模型和神经网络的组合预测算法.通过构建非等时距加权灰色预测模型,将原始数据序列的平均值作为累加序... 非等时距预测算法在不等时间间隔序列的趋势分析与预测方面具有重要作用.在传统灰色预测理论的基础上,提出一种基于非等时距加权灰色模型和神经网络的组合预测算法.通过构建非等时距加权灰色预测模型,将原始数据序列的平均值作为累加序列初值,将连续累积函数的积分面积作为背景值,对累加序列进行加权处理,以真实反映时间序列发展对预测结果的影响.在此基础上,引入BP神经网络对灰色预测的残差序列进行修正,进一步提高了预测精度.经算例验证,该算法预测精度达到1级,且高于类似算法. 展开更多
关键词 预测 非等时距 灰色模型 加权 神经网络 残差修正
在线阅读 下载PDF
基于非等时距加权灰色模型与神经网络的轨道不平顺预测 被引量:28
11
作者 韩晋 杨岳 +1 位作者 陈峰 吴湘华 《铁道学报》 EI CAS CSCD 北大核心 2014年第1期81-87,共7页
对轨道不平顺的发展趋势进行有效预测,可以提高铁路线路养护的维修效率,保障行车安全。根据轨道不平顺的发展特性,提出一种基于非等时距加权灰色理论和神经网络法的组合预测方法。该方法通过构建非等时距加权灰色预测模型,将原始TQI序... 对轨道不平顺的发展趋势进行有效预测,可以提高铁路线路养护的维修效率,保障行车安全。根据轨道不平顺的发展特性,提出一种基于非等时距加权灰色理论和神经网络法的组合预测方法。该方法通过构建非等时距加权灰色预测模型,将原始TQI序列的平均值作为累加序列初值,将连续累积函数的积分面积作为背景值,对累加序列进行加权处理,较好地反映了时间序列对轨道不平顺预测结果的贡献。在此基础上,引入BP神经网络模型对TQI预测的残差序列进行修正,较好地克服了单一模型预测精度偏低的不足。分别对沪昆线上行两段线路的轨道不平顺进行预测,结果表明该预测方法相对误差平均值分别为2.76%和2.08%,预测结果的后验差比值分别为0.121和0.151,精度等级达到1级。 展开更多
关键词 轨道不平顺 神经网络 非等时距 灰色模型 加权 残差修正
在线阅读 下载PDF
基于LSTM人工神经网络的电力系统负荷预测方法 被引量:15
12
作者 陈胜 刘鹏飞 +1 位作者 王平 马建伟 《沈阳工业大学学报》 CAS 北大核心 2024年第1期66-71,共6页
针对电力市场环境下短期电力系统负荷预测准确性较低的问题,提出了一种基于LSTM人工神经网络的组合预测模型。分析了LSTM神经网络和其变体GRU神经网络在进行负荷预测时学习时序特征的独特优势,并以卷积神经网络作为负荷数据的特征提取层... 针对电力市场环境下短期电力系统负荷预测准确性较低的问题,提出了一种基于LSTM人工神经网络的组合预测模型。分析了LSTM神经网络和其变体GRU神经网络在进行负荷预测时学习时序特征的独特优势,并以卷积神经网络作为负荷数据的特征提取层,结合GRU网络构建了组合模型,通过建立残差预测模型对结果进行修正。仿真结果表明,具有记忆功能的神经网络预测效果要优于ANN和SVM模型,且所提出残差预测模型的负荷预测平均相对误差约为1.79%,其准确性高于单一算法的负荷预测模型。 展开更多
关键词 负荷预测 人工神经网络 长短期记忆 卷积神经网络 平均相对误差 残差修正 特征提取 组合模型
在线阅读 下载PDF
基于深度卷积神经网络的汽车图像分类算法与加速研究 被引量:4
13
作者 黄佳美 张伟彬 熊官送 《现代电子技术》 北大核心 2024年第7期140-144,共5页
在非法占用公交车道违规车辆等领域的边缘计算与识别中,针对基于深度卷积神经网络的图像物体分类算法模型算力需求大与边缘设备部署后有限资源的突出矛盾,如何设计边缘计算设备的加速单元以保证分类算法的精度与实时性具有重要意义。针... 在非法占用公交车道违规车辆等领域的边缘计算与识别中,针对基于深度卷积神经网络的图像物体分类算法模型算力需求大与边缘设备部署后有限资源的突出矛盾,如何设计边缘计算设备的加速单元以保证分类算法的精度与实时性具有重要意义。针对上述问题,提出一种基于深度卷积神经网络的公交分类算法,该方法在现场可编程逻辑门阵列上实现了公交车图像分类算法的加速。通过基于迁移学习方法对ResNet50预训练模型进行微调,采用嵌入式端的推理加速实现对模型的推理,并对FPGA加速方案进行推理部署实现。结果表明,该算法具有硬件配置灵活、信息处理加速快的优点,这为实现神经网络在嵌入式平台的高效、高速应用提供了有效解决方案。 展开更多
关键词 图像分类 边缘计算 卷积神经网络 迁移学习 resnet50模型 加速推理
在线阅读 下载PDF
结合优化U⁃Net和残差神经网络的单通道语音增强算法 被引量:6
14
作者 许春冬 徐琅 周滨 《现代电子技术》 2022年第9期35-40,共6页
语音增强的目的是从带噪语音中恢复出干净的语音信号,为了解决现有深度神经网络中语音增强算法不稳定,语音增强效果不理想的问题,提出一种改进的U⁃Net网络与残差神经网络相结合的语音增强算法。首先,该方法构建了一个基于U⁃Net网络的端... 语音增强的目的是从带噪语音中恢复出干净的语音信号,为了解决现有深度神经网络中语音增强算法不稳定,语音增强效果不理想的问题,提出一种改进的U⁃Net网络与残差神经网络相结合的语音增强算法。首先,该方法构建了一个基于U⁃Net网络的端到端的语音增强模型;然后在该模型的编解码块中引入残差单元,将残差神经网络结构的跨层连接和拟合残差项应用到模型训练中,该方法更有利于恢复目标语音的细节特征信息,增强了模型训练的稳定性,提高了模型的特征提取能力和训练效率,改进后的Residual⁃U⁃Net网络模型能够实现更优的语音增强效果。仿真实验结果表明:与现有的其他几种语音增强方法相比,文中所提出的Residual⁃U⁃Net算法更有效地实现了语音增强,此外,该算法具有良好的去噪效果,进一步提高了语音信号的质量及其可懂度。 展开更多
关键词 语音增强 深层神经网络 U⁃Net 残差神经网络 跨层连接 模型训练 残差单元引入 特征提取
在线阅读 下载PDF
基于深度神经网络的力学场量代理计算模型研究 被引量:4
15
作者 张纯 罗金 李登鹏 《应用力学学报》 CAS CSCD 北大核心 2021年第2期552-559,共8页
在深度学习技术的基础上,提出了一种结合深度残差网络和自编码器特征的深度神经网络代理模型;考虑到结构存在空洞或应力集中等局部场量变化急剧的情况,引入了注意力机制来强化深度神经网络对空间局部特征的描述能力。数值算例分析结果表... 在深度学习技术的基础上,提出了一种结合深度残差网络和自编码器特征的深度神经网络代理模型;考虑到结构存在空洞或应力集中等局部场量变化急剧的情况,引入了注意力机制来强化深度神经网络对空间局部特征的描述能力。数值算例分析结果表明:在不同设计变量情况下,基于深度神经网络的代理模型不仅计算速度快,处理100个计算样本的耗时不到有限元软件的1.5%,而且能准确预测结构应力、应变等力学场量的大小与分布,平均相对误差小于2.5%,可以满足一般的工程应用要求。 展开更多
关键词 代理模型 深度神经网络 注意力机制 力学场量 残差网络 自编码器
在线阅读 下载PDF
基于神经网络灰色Verhulst算法的CPI预测模型 被引量:6
16
作者 陆明希 严广乐 《统计与决策》 CSSCI 北大核心 2009年第17期52-53,共2页
为了提高居民消费价格指数的预测精度,对于呈近似S形的CPI时间序列,利用灰色Verhulst模型对其预测。构造基于时间序列的人工神经网络输入输出模式,利用BP神经网络对原始数据与灰色Verhulst预测值的残差进行训练。仿真实例表明,该组合算... 为了提高居民消费价格指数的预测精度,对于呈近似S形的CPI时间序列,利用灰色Verhulst模型对其预测。构造基于时间序列的人工神经网络输入输出模式,利用BP神经网络对原始数据与灰色Verhulst预测值的残差进行训练。仿真实例表明,该组合算法预测结果比单纯使用GM(1,1)模型、灰色Verhulst模型和文献[1]的总体误差要小,将神经网络引入到灰色Verhulst模型中能较好地提高预测精度。 展开更多
关键词 居民消费价格指数 灰色VERHULST模型 人工神经网络 残差修正
在线阅读 下载PDF
基于改进时空残差卷积神经网络的城市路网短时交通流预测 被引量:8
17
作者 包银鑫 曹阳 施佺 《计算机应用》 CSCD 北大核心 2022年第1期258-264,共7页
城市路网交通流预测受到历史交通流和相邻路口交通流的影响,具有复杂的时空关联性。针对传统时空残差模型缺乏对交通流数据进行相关性分析、捕获微小变化而容易忽略长期时间特征等问题,提出一种基于改进时空残差卷积神经网络(CNN)的城... 城市路网交通流预测受到历史交通流和相邻路口交通流的影响,具有复杂的时空关联性。针对传统时空残差模型缺乏对交通流数据进行相关性分析、捕获微小变化而容易忽略长期时间特征等问题,提出一种基于改进时空残差卷积神经网络(CNN)的城市路网短时交通流预测模型。该模型将原始交通流数据转化成交通栅格数据,利用皮尔逊相关系数(PCC)对交通栅格数据进行相关性分析,确定相关性高的周期序列和邻近序列;同时,建立周期序列模型和邻近序列模型,并引入长短时记忆(LSTM)网络作为混合模型提取时间特征以及捕获两种序列的长期时间特征。利用成都市出租车数据集对模型进行验证,结果表明该模型预测结果优于LSTM、CNN和传统残差模型等基准模型,以均方根误差(RMSE)为评价指标时,所提模型将测试集中交通路网的平均预测精度分别提高了25.6%、13.3%和3.2%。 展开更多
关键词 短时交通流预测 时空分析 残差网络 皮尔逊相关系数 长短时记忆网络 卷积神经网络 组合模型
在线阅读 下载PDF
结合Inception模型的卷积神经网络图像去噪方法 被引量:12
18
作者 李敏 章国豪 +2 位作者 曾建伟 杨晓锋 胡晓敏 《计算机工程与应用》 CSCD 北大核心 2019年第20期139-144,共6页
为更有效地去除图像中的噪声,提出一种结合Inception 模型的深度卷积神经网络(Convolutional Neural Network,CNN)图像去噪方法,以完整图像作为输入和输出,利用Inception 结构密集提取原始图像和噪声多个不同空间尺度的特征,并采用多种... 为更有效地去除图像中的噪声,提出一种结合Inception 模型的深度卷积神经网络(Convolutional Neural Network,CNN)图像去噪方法,以完整图像作为输入和输出,利用Inception 结构密集提取原始图像和噪声多个不同空间尺度的特征,并采用多种调优策略,增强网络的整体学习能力。为避免梯度消失,使用线性修正单元(Rectified Linear Unit,ReLU)激活函数;为加速网络的训练,增加批量规范化(Batch Normalization,BN)操作;加入跳跃结构进行残差学习(Residual Learning,RL),提升网络的去噪性能。基于公共数据集BSDS300 的三种高斯噪声等级实验结果表明,与其他图像去噪方法相比,模型在降低计算复杂度、提高收敛速度的同时,视觉效果更好,平均峰值信噪比(Peak Signal to Noise Ratio,PSNR)提升了约1.28 dB。 展开更多
关键词 图像去噪 深度卷积神经网络 INCEPTION 模型 批量规范化 残差学习
在线阅读 下载PDF
基于“分段-组合”残差神经网络的超声速氢气零维点火计算方法 被引量:1
19
作者 陈尔达 宋昊宇 +3 位作者 郭明明 田野 乐嘉陵 张华 《推进技术》 EI CAS CSCD 北大核心 2023年第12期91-101,共11页
受限于发动机燃烧数值模拟需要长时间超级计算机运行的问题,发展了一种基于“分段-组合”残差神经网络的氢气零维点火计算方法。以氢气零维点火算例为基础,基于自主研发的高超声速内外流耦合数值模拟软件AHL3D构建数据集。数据集中输入... 受限于发动机燃烧数值模拟需要长时间超级计算机运行的问题,发展了一种基于“分段-组合”残差神经网络的氢气零维点火计算方法。以氢气零维点火算例为基础,基于自主研发的高超声速内外流耦合数值模拟软件AHL3D构建数据集。数据集中输入变量为超声速工况下的温度、压强及8种组分质量分数的初始状态值,输出变量为3000个时刻点的温度、压强及8种组分质量分数状态值。构建了一种“分段”训练、“组合”预测的残差神经网络框架。算法首先将高维输入数据进行降维训练,再将“分段”模型预测后的参数冻结形成“组合”模型。与氢燃料直接计算相比,实验结果表明“分段-组合”残差神经网络可显著提升计算效率,对于11组分29反应的反应动力学模型可获得9.13倍的计算加速比,均方根误差降到了7.85×10^(-5),氢燃料参数的预测精度都高于98%,计算效率及精度优于现有的神经网络燃烧计算方法。 展开更多
关键词 “分段-组合”模型 残差神经网络 零维点火 数值模拟 计算加速
在线阅读 下载PDF
基于双流残差卷积神经网络的养殖鳗鲡(Anguilla)摄食强度评估研究 被引量:1
20
作者 李凯 江兴龙 +1 位作者 许志扬 林茜 《海洋与湖沼》 CAS CSCD 北大核心 2023年第4期1207-1216,共10页
为实现对养殖鳗鲡(Anguilla)摄食强度的准确评估,提出了一种基于双流残差卷积神经网络的鳗鲡摄食强度评估方法,该方法针对传统双流网络(Two-stream)中存在的问题做出了相应的改进。首先针对传统双流网络存在网络结构较浅,无法提取到充... 为实现对养殖鳗鲡(Anguilla)摄食强度的准确评估,提出了一种基于双流残差卷积神经网络的鳗鲡摄食强度评估方法,该方法针对传统双流网络(Two-stream)中存在的问题做出了相应的改进。首先针对传统双流网络存在网络结构较浅,无法提取到充分的鳗鲡摄食行为特征的问题,选择使用ResNet50网络进行替换,以提取到更具代表性的特征。其次针对传统双流网络最后的分类结果是把空间流和时间流的得分取平均值融合而获得,这种方式较为简单,且其空间流和时间流网络为独立进行训练,容易导致网络出现学习不到鳗鲡摄食行为的时空关联特征的问题,选择使用特征层融合方式对空间流和时间流网络提取获得的特征进行融合,让网络能够并行进行训练,以提取到时空信息间的关联特征。试验结果表明:文内提出的基于双流残差卷积神经网络的鳗鲡摄食强度评估方法准确率达到98.6%,与单通道的空间流和时间流网络相比,准确率分别提升了5.8%和8.5%,与传统的双流网络相比准确率也提升了3.2%。 展开更多
关键词 鳗鲡 摄食强度 双流残差卷积神经网络 resnet50 并行训练 特征层融合
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部