针对现有的动作识别算法的特征提取复杂、识别率低等问题,提出了基于批归一化变换(batch normali-zation)与Goog Le Net网络模型相结合的网络结构,将图像分类领域的批归一化思想应用到动作识别领域中进行训练算法改进,实现了对视频动作...针对现有的动作识别算法的特征提取复杂、识别率低等问题,提出了基于批归一化变换(batch normali-zation)与Goog Le Net网络模型相结合的网络结构,将图像分类领域的批归一化思想应用到动作识别领域中进行训练算法改进,实现了对视频动作训练样本的网络输入进行微批量(mini-batch)归一化处理。该方法以RGB图像作为空间网络的输入,光流场作为时间网络输入,然后融合时空网络得到最终动作识别结果。在UCF101和HMDB51数据集上进行实验,分别取得了93. 50%和68. 32%的准确率。实验结果表明,改进的网络架构在视频人体动作识别问题上具有较高的识别准确率。展开更多
常用多光谱遥感水体提取少有兼顾光谱与空间信息,致使水体提取的可靠性和准确性难以保证。在利用遥感水体光谱特性的同时,融入深度学习算法,提出归一化差分水体指数(normalized difference water index,NDWI)与深度学习联合的遥感水体...常用多光谱遥感水体提取少有兼顾光谱与空间信息,致使水体提取的可靠性和准确性难以保证。在利用遥感水体光谱特性的同时,融入深度学习算法,提出归一化差分水体指数(normalized difference water index,NDWI)与深度学习联合的遥感水体提取方法。该方法首先选取典型水体样本进行训练,构建深度学习卷积神经网络(convolutional neural networks,CNN)水体识别模型。其次,计算多光谱影像NDWI指数并分割成图斑,以图斑包络矩形构建初始的水体目标子区。最后,构建NDWI指数与CNN水体识别概率的联合估计模型,并以迭代运算实现最优化遥感水体提取。实验验证了该方法的高可靠性与准确性。相比常用方法,水体识别准确率高达94.19%,而错分率仅为5.04%,显著提高了水体提取精度。展开更多