期刊文献+
共找到153篇文章
< 1 2 8 >
每页显示 20 50 100
基于改进轻量级深度卷积神经网络的果树叶片分类及病害识别模型设计 被引量:3
1
作者 买买提·沙吾提 李荣鹏 +2 位作者 蔡和兵 赵明 梁嘉曦 《森林工程》 北大核心 2025年第2期277-287,共11页
新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识... 新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识别模型。其中融入轻量型的归一化注意力机制,提高模型对特征信息的敏感度,使模型关注显著性特征。同时,将L1正则化(L1 regularization或losso)添加到损失函数中,对权重进行稀疏性惩罚,抑制非显著性权重。试验结果表明,在叶片分类中,模型对自构建植物叶片病害识别数据集(Plant Village)、混合数据集的分类结果均表现良好,准确率分别达到97.05%、98.73%、94.91%,具有较好的泛化能力。在病害识别中,MobileNet-V2 NAM模型实现94.55%的识别准确率,高于深度卷积神经网络(AlexNet)、视觉几何群网络(VGG16)经典卷积神经网络(Convolutional Neural Networks,CNN)模型,且模型参数量只有3.56 M。MobileNet-V2 NAM在具有良好准确率同时保持了较低的模型参数量,为深度学习模型嵌入到移动设备提供技术支持。 展开更多
关键词 新疆 果树分类 病害识别 归一化注意力轻量级深度卷积神经网络(MobileNet-V2 NAM) 归一化注意力机制
在线阅读 下载PDF
基于一维卷积神经网络的雷达个体识别算法 被引量:1
2
作者 杨孟璋 农丽萍 +1 位作者 李然 王俊义 《计算机工程与设计》 北大核心 2025年第5期1281-1288,共8页
为解决利用长序列雷达信号对雷达辐射源个体进行分类识别的问题,提出一种融合注意力机制和残差的一维卷积深度神经网络(1CDNN)模型,利用一维卷积从原始长序列雷达信号中直接提取特征,减少模型的参数量。引入注意力机制帮助模型学习利用... 为解决利用长序列雷达信号对雷达辐射源个体进行分类识别的问题,提出一种融合注意力机制和残差的一维卷积深度神经网络(1CDNN)模型,利用一维卷积从原始长序列雷达信号中直接提取特征,减少模型的参数量。引入注意力机制帮助模型学习利用全局信息选择关键特征,提高模型的分类识别精度。引入残差使得模型在缓解梯度消失的同时更容易进行优化和训练。实验结果表明,所提模型在实际采集数据集上具有结构简单、训练难度低、分类识别精度高和收敛速度快的优点。 展开更多
关键词 雷达辐射源识别 长序列雷达信号 深度学习 端到端 一维卷积神经网络 注意力机制 残差学习
在线阅读 下载PDF
基于2D-3D卷积神经网络的情绪识别模型
3
作者 杨朋辉 杨长青 +1 位作者 刘静 崔冬 《燕山大学学报》 北大核心 2025年第1期66-73,共8页
基于脑电信号的情绪识别是人机交互的重要部分,本文将二维卷积神经网络、三维卷积神经网络、深度可分离卷积进行结合,提出一种基于2D-3D卷积神经网络(2-3DCNN)模型,从时间、空间、频率三个方面进行特征提取。在网络中引入SE-ResNet网络... 基于脑电信号的情绪识别是人机交互的重要部分,本文将二维卷积神经网络、三维卷积神经网络、深度可分离卷积进行结合,提出一种基于2D-3D卷积神经网络(2-3DCNN)模型,从时间、空间、频率三个方面进行特征提取。在网络中引入SE-ResNet网络、深度残差收缩网络和Xception网络,挖掘脑电信号中更能显著反映情感变化的空间、时间和频率信息。本文在DEAP公共情感数据集上做性能测试,结果表明,2-3DCNN在唤醒度和效价的两个分类任务上的识别准确率分别达到了97.59%和97.21%,比目前最先进的模型分别高出2.36%和1.34%。 展开更多
关键词 情绪识别 脑电信号 卷积神经网络 深度残差收缩网络 深度可分离卷积
在线阅读 下载PDF
改进深度残差卷积神经网络的LDCT图像估计 被引量:7
4
作者 高净植 刘祎 +1 位作者 张权 桂志国 《计算机工程与应用》 CSCD 北大核心 2018年第16期203-210,219,共9页
针对低剂量计算机断层扫描(Low-Dose Computed Tomography,LDCT)重建图像出现明显条形伪影的现象,提出了一种基于残差学习的深度卷积神经网络(Deep Residual Convolutional Neural Network,DR-CNN)模型,可以从LDCT图像预测标准剂量计算... 针对低剂量计算机断层扫描(Low-Dose Computed Tomography,LDCT)重建图像出现明显条形伪影的现象,提出了一种基于残差学习的深度卷积神经网络(Deep Residual Convolutional Neural Network,DR-CNN)模型,可以从LDCT图像预测标准剂量计算机断层扫描(Normal-Dose Computed Tomography,NDCT)图像。该模型在训练阶段,将数据集中的LDCT图像和NDCT图像相减得到残差图像,将LDCT图像和残差图像分别作为输入和标签,通过深度卷积神经网络(Convolution Neural Network,CNN)学习输入和标签之间的映射关系;在测试阶段,利用此映射关系从LDCT图像预测残差图像,用LDCT图像减去残差图像得到预测的NDCT图像。实验采用50对大小为512×512的同一体模的常规剂量胸腔扫描切片和投影域添加噪声后的重建图像作为数据集,其中45对作为训练集,其他作为测试集,来验证此模型的有效性。通过与非局部降噪算法、匹配三维滤波算法和K-SVD算法等目前公认效果较好的图像去噪算法对比,所提模型预测的NDCT图像均方根误差小,且信噪比略高于其他算法处理结果。 展开更多
关键词 低剂量计算机断层扫描 卷积神经网络 残差学习 深度学习
在线阅读 下载PDF
基于深度时空残差卷积神经网络的课堂教学视频中多人课堂行为识别 被引量:24
5
作者 黄勇康 梁美玉 +2 位作者 王笑笑 陈徵 曹晓雯 《计算机应用》 CSCD 北大核心 2022年第3期736-742,共7页
针对课堂教学场景遮挡严重、学生众多,以及目前的视频行为识别算法并不适用于课堂教学场景,且尚无学生课堂行为的公开数据集的问题,构建了课堂教学视频库以及学生课堂行为库,提出了基于深度时空残差卷积神经网络的课堂教学视频中实时多... 针对课堂教学场景遮挡严重、学生众多,以及目前的视频行为识别算法并不适用于课堂教学场景,且尚无学生课堂行为的公开数据集的问题,构建了课堂教学视频库以及学生课堂行为库,提出了基于深度时空残差卷积神经网络的课堂教学视频中实时多人学生课堂行为识别算法。首先,结合实时目标检测和跟踪,得到每个学生的实时图片流;接着,利用深度时空残差卷积神经网络对每个学生行为的时空特征进行学习,从而实现课堂教学场景中面向多学生目标的课堂行为的实时识别;此外,构建了智能教学评估模型,并设计实现了基于学生课堂行为识别的智能教学评估系统,助力教学质量的提升,以实现智慧教育。通过在课堂教学视频数据集上进行实验对比与分析,验证了提出的课堂教学视频中实时多人学生课堂行为识别模型能够达到88.5%的准确率,且所构建的基于课堂行为识别的智能教学评估系统在课堂教学视频数据集上也已取得较好的运行效果。 展开更多
关键词 深度时空残差卷积神经网络 目标检测 目标跟踪 多人课堂行为识别 智能教学评估
在线阅读 下载PDF
结合批归一化的直通卷积神经网络图像分类算法 被引量:26
6
作者 朱威 屈景怡 吴仁彪 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第9期1650-1657,共8页
为解决深度卷积神经网络由于梯度消失而导致训练困难的问题,提出一种基于批归一化的直通卷积神经网络算法.首先对网络所有卷积层的激活值进行批归一化处理,然后利用可学习的重构参数对归一化后的数据进行还原,最后对重构参数进行训练.在... 为解决深度卷积神经网络由于梯度消失而导致训练困难的问题,提出一种基于批归一化的直通卷积神经网络算法.首先对网络所有卷积层的激活值进行批归一化处理,然后利用可学习的重构参数对归一化后的数据进行还原,最后对重构参数进行训练.在CIFAR-10,CIFAR-100和MNIST这3个标准图像数据集上进行实验的结果表明,文中算法分别取得了94.53%,73.40%和99.74%的分类准确率,明显优于其他深度神经网络算法;该算法能够有效地克服传统卷积神经网络中梯度消失的问题. 展开更多
关键词 图像分类 深度学习 直通卷积神经网络 归一化 梯度消失
在线阅读 下载PDF
基于卷积神经网络的深度图像超分辨率重建方法 被引量:37
7
作者 李伟 张旭东 《电子测量与仪器学报》 CSCD 北大核心 2017年第12期1918-1928,共11页
为了更有效地提高深度图像的分辨率,构建了一种更深层次的深度图像超分辨率重建的卷积神经网络。该网络直接将低分辨率深度图像作为网络的初始输入,通过卷积神经网络学习图像的高阶表示,获得更具有表达能力的深层特征,同时在网络的输出... 为了更有效地提高深度图像的分辨率,构建了一种更深层次的深度图像超分辨率重建的卷积神经网络。该网络直接将低分辨率深度图像作为网络的初始输入,通过卷积神经网络学习图像的高阶表示,获得更具有表达能力的深层特征,同时在网络的输出层引入亚像素卷积层,针对提取到的特征学习不同上采样滤波器,实现上采样放大操作。为了实现网络更好地收敛,在网络中加入了残差网络结构。在4个常用数据集上的实验结果表明,与其他先进方法相比,该方法网络收敛速度更快,并可以有效地保护图像的边缘结构,解决伪影问题,且在定性和定量两方面均取得了很好的重建效果。 展开更多
关键词 深度图像 超分辨率重建 卷积神经网络 残差网络结构
在线阅读 下载PDF
基于深度卷积神经网络的协作频谱感知方法 被引量:19
8
作者 盖建新 薛宪峰 +1 位作者 吴静谊 南瑞祥 《电子与信息学报》 EI CSCD 北大核心 2021年第10期2911-2919,共9页
针对传统卷积神经网络(CNN)频谱感知方法提取特征能力受限于网络结构简单,增加网络结构又容易出现梯度消失等问题,该文通过在传统卷积神经网络中添加捷径连接,实现输入层恒等映射更深的网络,提出一种基于深度卷积神经网络(DCNN)的协作... 针对传统卷积神经网络(CNN)频谱感知方法提取特征能力受限于网络结构简单,增加网络结构又容易出现梯度消失等问题,该文通过在传统卷积神经网络中添加捷径连接,实现输入层恒等映射更深的网络,提出一种基于深度卷积神经网络(DCNN)的协作频谱感知方法。该方法将频谱感知问题转化为图像二分类问题,对正交相移键控(QPSK)信号的协方差矩阵进行归一化灰度处理,并作为深度卷积神经网络的输入,通过残差学习训练深度卷积神经网络模型,提取2维灰度图像的深层特征,将测试数据输入到训练好的模型中,完成基于图像分类的频谱感知。实验结果表明:与传统的频谱感知方法相比,在低信噪比(SNR)下、多用户协作感知时,所提方法具有更高的检测概率和更低的虚警概率。 展开更多
关键词 协作频谱感知 深度卷积神经网络 残差学习 协方差矩阵
在线阅读 下载PDF
全卷积多并联残差神经网络 被引量:6
9
作者 李国强 张露 《小型微型计算机系统》 CSCD 北大核心 2020年第1期30-34,共5页
随着人工智能的火热发展,深度学习已经在很多领域占有了一席之地.作为深度学习中一个典型网络--残差神经网络模型自提出之日起就成为了众多研究者的关注点.然而,残差神经网络还有很大的改进空间.为了更好地解决反向传播中梯度减小的问题... 随着人工智能的火热发展,深度学习已经在很多领域占有了一席之地.作为深度学习中一个典型网络--残差神经网络模型自提出之日起就成为了众多研究者的关注点.然而,残差神经网络还有很大的改进空间.为了更好地解决反向传播中梯度减小的问题,本文提出了一种改进的残差神经网络,称为全卷积多并联残差神经网络.在该网络中,每一层的特征信息不仅传输到下一层还输出到最后的平均池化层.为了测试该网络的性能,分别在三个数据集(MNIST,CIFAR-10和CIFAR-100)上对比图像分类的结果.实验结果表明,改进后的全卷积多并联残差神经网络与残差网络相比具有更高的分类准确率和更好的泛化能力. 展开更多
关键词 深度学习 残差神经网络 卷积多并联残差神经网络 图像分类
在线阅读 下载PDF
基于深度卷积神经网络的慢动目标检测 被引量:7
10
作者 扶明 郑霖 +3 位作者 杨超 黄凤青 符杰林 王俊义 《传感器与微系统》 CSCD 北大核心 2022年第2期111-114,共4页
针对强杂波背景下慢速运动目标检测性能不足的问题,设计了一种基于深度卷积神经网络(DCNN)的目标检测方法。主要将雷达回波信号距离—多普勒谱作为输入,送入设计的DCNN中,通过学习回波信号中杂波特征,并隐含的去除回波信号中目标成分,... 针对强杂波背景下慢速运动目标检测性能不足的问题,设计了一种基于深度卷积神经网络(DCNN)的目标检测方法。主要将雷达回波信号距离—多普勒谱作为输入,送入设计的DCNN中,通过学习回波信号中杂波特征,并隐含的去除回波信号中目标成分,得到回波信号的残差谱。然后利用残差谱与回波信号R-D谱进行背景对消以抑制杂波,进而实现对回波信号中运动目标的检测。由于该方法通过学习杂波特性进而进行目标检测,因此适用于未知杂波模型的场景,避免了假设的模型与实际环境不符合的问题。实验验证:该方法相比于传统的杂波抑制目标检测方法,具有较好的性能表现。 展开更多
关键词 目标检测 深度学习 卷积神经网络 背景对消 残差学习
在线阅读 下载PDF
基于深度可分离卷积残差模块的抓取检测算法
11
作者 平路静 马行 +1 位作者 穆春阳 姜谱照 《传感器与微系统》 北大核心 2025年第5期133-137,共5页
针对在移动设备和嵌入式设备等资源受限的环境中,机器人不易实时准确抓取物体的问题,提出一种基于深度可分离卷积残差模块的卷积神经网络(CNN)模型。该模型充分利用相机颜色和深度信息,以RGB-D图像作为网络输入,直接对逐个像素点完成抓... 针对在移动设备和嵌入式设备等资源受限的环境中,机器人不易实时准确抓取物体的问题,提出一种基于深度可分离卷积残差模块的卷积神经网络(CNN)模型。该模型充分利用相机颜色和深度信息,以RGB-D图像作为网络输入,直接对逐个像素点完成抓取预测。利用深度可分离卷积替代传统残差结构中的标准卷积层,构建出深度可分离卷积残差模块,在不降低网络性能的基础上减少模型参数,网络模型大小仅为2.3 MB。最后,在Cornell抓取数据集上进行实验,准确率达到97.7%,检测速度为58 fps。 展开更多
关键词 卷积神经网络 深度可分离卷积 残差网络 抓取检测
在线阅读 下载PDF
基于改进的深度卷积神经网络的人体动作识别方法 被引量:31
12
作者 陈胜娣 魏维 +2 位作者 何冰倩 陈思宇 刘基缘 《计算机应用研究》 CSCD 北大核心 2019年第3期945-949,953,共6页
针对现有的动作识别算法的特征提取复杂、识别率低等问题,提出了基于批归一化变换(batch normali-zation)与Goog Le Net网络模型相结合的网络结构,将图像分类领域的批归一化思想应用到动作识别领域中进行训练算法改进,实现了对视频动作... 针对现有的动作识别算法的特征提取复杂、识别率低等问题,提出了基于批归一化变换(batch normali-zation)与Goog Le Net网络模型相结合的网络结构,将图像分类领域的批归一化思想应用到动作识别领域中进行训练算法改进,实现了对视频动作训练样本的网络输入进行微批量(mini-batch)归一化处理。该方法以RGB图像作为空间网络的输入,光流场作为时间网络输入,然后融合时空网络得到最终动作识别结果。在UCF101和HMDB51数据集上进行实验,分别取得了93. 50%和68. 32%的准确率。实验结果表明,改进的网络架构在视频人体动作识别问题上具有较高的识别准确率。 展开更多
关键词 动作识别 归一化 深度学习 卷积神经网络
在线阅读 下载PDF
基于残差的优化卷积神经网络服装分类算法 被引量:22
13
作者 张振焕 周彩兰 梁媛 《计算机工程与科学》 CSCD 北大核心 2018年第2期354-360,共7页
针对目前服装分类算法在解决多类别服装分类问题时分类精度一般的问题,提出了一种基于残差的优化卷积神经网络服装分类算法,在网络中使用了如下三种优化方法:(1)调整批量归一化层、激活函数层与卷积层在网络中的排列顺序;(2)"池化... 针对目前服装分类算法在解决多类别服装分类问题时分类精度一般的问题,提出了一种基于残差的优化卷积神经网络服装分类算法,在网络中使用了如下三种优化方法:(1)调整批量归一化层、激活函数层与卷积层在网络中的排列顺序;(2)"池化层+卷积层"的并行池化结构;(3)使用全局均值池化层替换全连接层。经过由香港中文大学多媒体实验室提供的多类别大型服装数据集(DeepFashion)和标准数据集CIFAR-10上的实验表明,所提出的网络模型在处理图片的速度和分类精度方面都优于VGGNet和AlexNet,且得到了目前为止已知的在DeepFashion数据集上最好的分类准确率。该网络也可以更好地应用于目标检测和图像分割领域。 展开更多
关键词 深度学习 残差网络 多类别服装分类 卷积神经网络优化
在线阅读 下载PDF
基于残差SDE-Net的深度神经网络不确定性估计 被引量:2
14
作者 王永光 姚淑珍 谭火彬 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第8期1991-2000,共10页
神经随机微分方程模型(SDE-Net)可以从动力学系统的角度来量化深度神经网络(DNNs)的认知不确定性。但SDE-Net面临2个问题,一是在处理大规模数据集时,随着网络层次的增加会导致性能退化;二是SDE-Net在处理具有噪声或高丢失率的分布内数... 神经随机微分方程模型(SDE-Net)可以从动力学系统的角度来量化深度神经网络(DNNs)的认知不确定性。但SDE-Net面临2个问题,一是在处理大规模数据集时,随着网络层次的增加会导致性能退化;二是SDE-Net在处理具有噪声或高丢失率的分布内数据所引起的偶然不确定性问题时性能较差。为此设计了一种残差SDE-Net(ResSDE-Net),该模型采用了改进的残差网络(ResNets)中的残差块,并应用于SDE-Net以获得一致稳定性和更高的性能;针对具有噪声或高丢失率的分布内数据,引入具有平移等变性的卷积条件神经过程(ConvCNPs)进行数据修复,从而提高ResSDE-Net处理此类数据的性能。实验结果表明:ResSDE-Net在处理分布内和分布外的数据时获得了一致稳定的性能,并在丢失了70%像素的MNIST、CIFAR10及实拍的SVHN数据集上,仍然分别获得89.89%、65.22%和93.02%的平均准确率。 展开更多
关键词 神经随机微分方程 卷积条件神经过程 不确定性估计 残差 深度神经网络
在线阅读 下载PDF
基于深度卷积神经网络的脑电图异常检测 被引量:5
15
作者 杜云梅 黄帅 梁会营 《华南师范大学学报(自然科学版)》 CAS 北大核心 2020年第2期122-128,共7页
为解决EEG自动检测的错误率非常高的问题,提出了一种基于深层卷积神经网络(CNN)对脑电图进行异常检测的方法:首先,对多个异构数据源按标准进行重构和预处理,生成了有118716个样本的训练集和有12022个样本的测试集;然后,构建有快捷连接... 为解决EEG自动检测的错误率非常高的问题,提出了一种基于深层卷积神经网络(CNN)对脑电图进行异常检测的方法:首先,对多个异构数据源按标准进行重构和预处理,生成了有118716个样本的训练集和有12022个样本的测试集;然后,构建有快捷连接的深层CNN模型,以自动化学习ECG特征并进行分类识别;接着,将模型在训练集上进行试验与调参,保存了性能最好的模型参数;最后,在测试集上进行预测.预测结果显示该模型达到了94.33%的分类准确率.通过所提方法对脑电信号进行处理与分析,能够自动提取EEG特征并进行异常识别,从而达到快速检测与辅助诊疗的目的. 展开更多
关键词 卷积神经网络 残差模块 脑电图 异常检测 深度学习
在线阅读 下载PDF
基于并行残差卷积神经网络的多种树叶分类 被引量:3
16
作者 魏书伟 曾上游 +1 位作者 周悦 王新娇 《现代电子技术》 北大核心 2020年第9期96-100,共5页
树叶分类识别对于鉴定新的或者稀缺树种至关重要,采用卷积神经网络算法可以实现对树叶图像特征的自动提取,减少繁琐的人工成本,实现使用人工智能的方法来分类树叶。实验采用一种并行残差卷积神经网络和一种加入残差学习的传统Alexnet网... 树叶分类识别对于鉴定新的或者稀缺树种至关重要,采用卷积神经网络算法可以实现对树叶图像特征的自动提取,减少繁琐的人工成本,实现使用人工智能的方法来分类树叶。实验采用一种并行残差卷积神经网络和一种加入残差学习的传统Alexnet网络在制作的30种分类树叶的数据集上测试效果并作对比。以上两种方式分别比传统Alexnet网络提高了15.36%和9.36%,而且使网络更轻量化,最高准确率为90.67%,为树种识别研究提供了有效的分类方法。 展开更多
关键词 树叶分类 卷积神经网络 残差学习 图像特征提取 批量归一化 测试效果对比
在线阅读 下载PDF
基于改进深度卷积神经网络的纸币识别研究 被引量:9
17
作者 盖杉 鲍中运 《电子与信息学报》 EI CSCD 北大核心 2019年第8期1992-2000,共9页
针对如何提高纸币识别率的问题,该文提出一种改进深度卷积神经网络(DCNN)的纸币识别算法。该算法首先通过融合迁移学习、带泄露整流(Leaky ReLU)函数、批量归一化(BN)和多层次残差单元构造深度卷积层,对输入的不同尺寸纸币进行稳定而快... 针对如何提高纸币识别率的问题,该文提出一种改进深度卷积神经网络(DCNN)的纸币识别算法。该算法首先通过融合迁移学习、带泄露整流(Leaky ReLU)函数、批量归一化(BN)和多层次残差单元构造深度卷积层,对输入的不同尺寸纸币进行稳定而快速的特征提取与学习;然后采用改进的多层次空间金字塔池化算法对提取的纸币特征实现固定大小的输出表示;最后通过网络全连接层和softmax层实现纸币图像分类。实验结果表明,该算法在分类性能、泛化能力与稳定性上明显优于常用的纸币分类算法;同时该算法也能够满足纸币清分系统的实时性要求。 展开更多
关键词 纸币识别 深度卷积神经网络 残差学习 空间金字塔池化
在线阅读 下载PDF
基于改进卷积神经网络的多种植物叶片病害识别 被引量:207
18
作者 孙俊 谭文军 +3 位作者 毛罕平 武小红 陈勇 汪龙 《农业工程学报》 EI CAS CSCD 北大核心 2017年第19期209-215,共7页
针对训练收敛时间长,模型参数庞大的问题,该文将传统的卷积神经网络模型进行改进,提出一种批归一化与全局池化相结合的卷积神经网络识别模型。通过对卷积层的输入数据进行批归一化处理,以便加速网络收敛。进一步缩减特征图数目,并采用... 针对训练收敛时间长,模型参数庞大的问题,该文将传统的卷积神经网络模型进行改进,提出一种批归一化与全局池化相结合的卷积神经网络识别模型。通过对卷积层的输入数据进行批归一化处理,以便加速网络收敛。进一步缩减特征图数目,并采用全局池化的方法减少特征数。通过设置不同尺寸的初始层卷积核和全局池化层类型,以及设置不同初始化类型和激活函数,得到8种改进模型,用于训练识别14种不同植物共26类病害并选出最优模型。改进后最优模型收敛时间小于传统卷积神经网络模型,仅经过3次训练迭代,就能达到90%以上的识别准确率;参数内存需求仅为2.6 MB,平均测试识别准确率达到99.56%,查全率和查准率的加权平均分数为99.41%。改进模型受叶片的空间位置的变换影响较小,能识别多种植物叶片的不同病害。该模型具有较高的识别准确率及较强的鲁棒性,该研究可为植物叶片病害的识别提供参考。 展开更多
关键词 病害 植物 图像处理 识别 卷积神经网络 归一化 全局池化 深度学习
在线阅读 下载PDF
基于改进3D卷积神经网络的行为识别 被引量:13
19
作者 张小俊 李辰政 +1 位作者 孙凌宇 张明路 《计算机集成制造系统》 EI CSCD 北大核心 2019年第8期2000-2006,共7页
鉴于基于视频的人体行为识别中的视频流数据过于庞大,3D卷积核参数设置过多,存在训练时间较长,调参困难等问题,以3D卷积神经网络为基础,提出一种将3D卷积核拆分成空间域和时间域两种卷积核的神经网络结构。两种卷积核分别形成两个数据... 鉴于基于视频的人体行为识别中的视频流数据过于庞大,3D卷积核参数设置过多,存在训练时间较长,调参困难等问题,以3D卷积神经网络为基础,提出一种将3D卷积核拆分成空间域和时间域两种卷积核的神经网络结构。两种卷积核分别形成两个数据流进行交互,同时引入残差网络以优化网络结构,减少参数设置。将所提方法应用于两个行为识别数据集KTH和UCF101上进行训练验证,其行为识别准确率分别为96.2%和90.7%。结果表明,较改进前的神经网络框架,所提方法在保证动作识别准确度的前提下,训练速度提高了7.5%~7.8%。该方法可以有效降低深度学习进行行为识别的硬件要求,提高模型训练效率,并可以广泛应用于智能机器人领域。 展开更多
关键词 行为识别 3D卷积神经网络 残差网络 双数据流 深度学习理论
在线阅读 下载PDF
结合水体指数与卷积神经网络的遥感水体提取 被引量:40
20
作者 何海清 杜敬 +1 位作者 陈婷 陈晓勇 《遥感信息》 CSCD 北大核心 2017年第5期82-86,共5页
常用多光谱遥感水体提取少有兼顾光谱与空间信息,致使水体提取的可靠性和准确性难以保证。在利用遥感水体光谱特性的同时,融入深度学习算法,提出归一化差分水体指数(normalized difference water index,NDWI)与深度学习联合的遥感水体... 常用多光谱遥感水体提取少有兼顾光谱与空间信息,致使水体提取的可靠性和准确性难以保证。在利用遥感水体光谱特性的同时,融入深度学习算法,提出归一化差分水体指数(normalized difference water index,NDWI)与深度学习联合的遥感水体提取方法。该方法首先选取典型水体样本进行训练,构建深度学习卷积神经网络(convolutional neural networks,CNN)水体识别模型。其次,计算多光谱影像NDWI指数并分割成图斑,以图斑包络矩形构建初始的水体目标子区。最后,构建NDWI指数与CNN水体识别概率的联合估计模型,并以迭代运算实现最优化遥感水体提取。实验验证了该方法的高可靠性与准确性。相比常用方法,水体识别准确率高达94.19%,而错分率仅为5.04%,显著提高了水体提取精度。 展开更多
关键词 深度学习 归一化差分水体指数 卷积神经网络 水体提取 空谱联合
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部