期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于残差注意力机制的图像去雾算法
被引量:
7
1
作者
杨振舰
尚佳美
+2 位作者
张众维
张艳
刘树东
《西北工业大学学报》
EI
CAS
CSCD
北大核心
2021年第4期901-908,共8页
传统基于先验知识与基于学习的图像去雾算法依赖大气散射模型,容易出现颜色失真和去雾不彻底的现象。针对上述问题,提出一种端到端的基于残差注意力机制的图像去雾算法,该算法网络包括编码、多尺度特征提取、特征融合和解码4个模块。编...
传统基于先验知识与基于学习的图像去雾算法依赖大气散射模型,容易出现颜色失真和去雾不彻底的现象。针对上述问题,提出一种端到端的基于残差注意力机制的图像去雾算法,该算法网络包括编码、多尺度特征提取、特征融合和解码4个模块。编码模块将输入的雾图编码为特征图像,便于后续特征提取并减少内存占用;多尺度特征提取模块包括残差平滑空洞卷积模块、残差块和高效通道注意力机制,能够扩大感受野并通过加权筛选提取的不同尺度特征以便融合;特征融合模块利用高效通道注意力机制,动态调整不同尺度特征的通道权重,学习丰富的上下文信息并抑制冗余信息,增强网络提取雾霾密度图像的能力从而使去雾更加彻底;解码模块对融合后的特征进行非线性映射得到雾霾密度图像,进而恢复无雾图像。通过在SOTS测试集和自然有雾图像上进行定量和定性的测试,所提方法取得了较好的客观和主观评价结果,并有效改善了颜色失真和去雾不彻底的现象。
展开更多
关键词
图像去雾
深度学习
通道注意力机制
残差平滑空洞卷积
特征提取
在线阅读
下载PDF
职称材料
题名
基于残差注意力机制的图像去雾算法
被引量:
7
1
作者
杨振舰
尚佳美
张众维
张艳
刘树东
机构
天津城建大学计算机与信息工程学院
出处
《西北工业大学学报》
EI
CAS
CSCD
北大核心
2021年第4期901-908,共8页
基金
重点实验室开放课题(2019LODTS006)
天津市教委科研计划项目(2017KJ059)资助。
文摘
传统基于先验知识与基于学习的图像去雾算法依赖大气散射模型,容易出现颜色失真和去雾不彻底的现象。针对上述问题,提出一种端到端的基于残差注意力机制的图像去雾算法,该算法网络包括编码、多尺度特征提取、特征融合和解码4个模块。编码模块将输入的雾图编码为特征图像,便于后续特征提取并减少内存占用;多尺度特征提取模块包括残差平滑空洞卷积模块、残差块和高效通道注意力机制,能够扩大感受野并通过加权筛选提取的不同尺度特征以便融合;特征融合模块利用高效通道注意力机制,动态调整不同尺度特征的通道权重,学习丰富的上下文信息并抑制冗余信息,增强网络提取雾霾密度图像的能力从而使去雾更加彻底;解码模块对融合后的特征进行非线性映射得到雾霾密度图像,进而恢复无雾图像。通过在SOTS测试集和自然有雾图像上进行定量和定性的测试,所提方法取得了较好的客观和主观评价结果,并有效改善了颜色失真和去雾不彻底的现象。
关键词
图像去雾
深度学习
通道注意力机制
残差平滑空洞卷积
特征提取
Keywords
image dehazing
deep learning
channel attention mechanism
residual smoothed dilated convolution
feature extraction
分类号
TP37 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于残差注意力机制的图像去雾算法
杨振舰
尚佳美
张众维
张艳
刘树东
《西北工业大学学报》
EI
CAS
CSCD
北大核心
2021
7
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部